Background: Male infertility is a multifactorial reproductive health problem with complex causes. Non-obstructive azoospermia (NOA) is characterized by failure of spermatogenesis, leading to the absence of spermatozoa in ejaculates. The molecular mechanism underlying the NOA is still not well understood.

Objectives: This study aims to identify the key genes involved in male infertility that could be a potential biomarker in the diagnosis and prognosis of azoospermia.

Study Design: The microarray expression profiles dataset GSE45885 and GSE45887 were downloaded from the NCBI's Gene Expression Omnibus (GEO) database and analyzed for male infertility-associated differentially expressed genes (DEGs) using the GEO2R tool. The common DEGs between the two datasets were combined and their protein-protein interaction (PPI) network was constructed using Cytoscape to reveal the hub genes by topology and module analysis. In addition, transcription factors (TFs) and protein kinases regulating the hub genes were identified using the X2K tool. Then, the expression of the hub genes was validated by analyzing the GSE190752 microarray dataset. Further, the PPI network was screened for biological roles and enriched pathways using DAVID software.

Results: About 256 DEGs associated with NOA were identified and constructed the PPI network to find the infertility-associated proteins. The biological processes linked with these proteins were spermatogenesis, cell differentiation, flagellated sperm motility, and spermatid development. The topology and module analysis of the infertility-associated protein network identified the hub genes TEX38, FAM71F, PRR30, FAM166A, LYZL6, TPPP2, ARMC12, SPACA4, and FAM205A, which were found to be upregulated in the non-obstructive azoospermia. In addition, a total of 23 transcription factors and 3 protein kinases that are regulating these key hub genes were identified. Further these hub genes expression was validated using the microarray data and found that their expression was increased in the testicular biopsies obtained from NOA subjects, compared to healthy individuals.

Conclusion: The identified key genes and its associated transcription factors are known to regulate the infertility-related processes in the non-obstructive azoospermia. Also, the clinical sample-based microarray data validation for the expression of these key hub genes indicates their potentiality to develop them as diagnostic or prognostic biomarkers for NOA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejogrb.2023.07.023DOI Listing

Publication Analysis

Top Keywords

hub genes
28
transcription factors
16
non-obstructive azoospermia
16
key genes
12
ppi network
12
genes
11
male infertility
8
topology module
8
module analysis
8
protein kinases
8

Similar Publications

Screening of biomarkers for diagnosing chronic kidney disease and heart failure with preserved ejection fraction through bioinformatics analysis.

Biochem Biophys Rep

March 2025

Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, 213000, Changzhou, Jiangsu Province, China.

Background: Previous research has established that chronic kidney disease (CKD) and heart failure with preserved ejection fraction (HFpEF) often coexist. Although we have a preliminary understanding of the potential correlation between HFpEF and CKD, the underlying pathophysiological mechanisms remain unclear. This study aimed to elucidate the molecular mechanisms associated with CKD and HFpEF through bioinformatics analysis.

View Article and Find Full Text PDF

Problem: Oxidative stress (OS) plays a key role in the pathogenesis of gestational diabetes mellitus (GDM), but it was not well understood. We aimed to investigate the biomarkers and underlying mechanisms of OS-related genes in GDM.

Method Of Study: The GSE103552 and GSE70493 datasets of GDM were acquired from the Gene Expression Omnibus (GEO) database.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.

Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.

View Article and Find Full Text PDF

Background: Polycystic ovary syndrome (PCOS) is an endocrine disease associated with reproductive and metabolic abnormalities. The aim of this study was to elucidate the effects of Schisandra rubriflora (S. rubriflora) on PCOS and its related mechanisms using network pharmacology, molecular docking and in vitro experiments.

View Article and Find Full Text PDF

Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!