A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of medical information system to identify dengue outbreak factors: Insights from a hyperendemic city in Malaysia. | LitMetric

Background: Dengue is widespread globally, but it is more severe in hyperendemic regions where the virus, its vectors, and its human hosts naturally occur. The problem is particularly acute in cities, where outbreaks affect a large human population living in a wide array of socio-environmental conditions. Controlling outbreaks will rely largely on systematic data collection and analysis approaches to uncover nuances on a city-by-city basis due to the diversity of factors.

Objective: The main objective of this study is to consolidate and analyse the dengue case dataset amassed by the e-Dengue web-based information system, developed by the Ministry of Health Malaysia, to improve our epidemiological understanding.

Methods: We retrieved data from the e-Dengue system and integrated a total of 18,812 cases from 2012 to 2019 (8 years) with meteorological data, geoinformatics techniques, and socio-environmental observations to identify plausible factors that could have caused dengue outbreaks in Ipoh, a hyperendemic city in Malaysia.

Results: The rainfall trend characterised by a linearity of R > 0.99, termed the "wet-dry steps", may be the unifying factor for triggering dengue outbreaks, though it is still a hypothesis that needs further validation. Successful mapping of the dengue "reservoir" contact zones and spill-over diffusion revealed socio-environmental factors that may be controlled through preventive measures. Age is another factor to consider, as the platelet and white blood cell counts in the "below 5" age group are much greater than in other age groups.

Conclusions: Our work demonstrates the novelty of the e-Dengue system, which can identify outbreak factors at high resolution when integrated with non-medical fields. Besides dengue, the techniques and insights laid out in this paper are valuable, at large, for advancing control strategies for other mosquito-borne diseases such as malaria, chikungunya, and zika in other hyperendemic cities elsewhere globally.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmedinf.2023.105162DOI Listing

Publication Analysis

Top Keywords

system identify
8
outbreak factors
8
hyperendemic city
8
e-dengue system
8
dengue outbreaks
8
dengue
7
application medical
4
system
4
medical system
4
identify dengue
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!