The current study intended to delve into the mechanisms of dexmedetomidine (Dex) in regulating myocardial pyroptosis against myocardial ischemia/reperfusion injury (MIRI). The rat MIRI models were induced by ligation/release of the coronary artery in vivo and Langendorff perfusion ex vivo. Hemodynamic parameters, infarction sizes, and histopathological changes were assessed to understand the effects of Dex on MIRI. We explored the mechanisms through functional experiments on an H9c2 cell hypoxia/reoxygenation (H/R) model. Cell viability and apoptosis were evaluated using cell counting kit 8 (CCK-8) and AV/PI dual staining respectively. The expressions of miR-665 and MEF2D mRNA were detected by qRT-PCR. Western blot was employed to determine the expression levels of pyroptosis- and signaling pathway- related proteins. The interplays between miR-665 and MEF2D were validated by Dual-luciferase reporter assays. Our findings indicated that Dex preconditioning dramatically attenuated hemodynamic derangements, infarct size, and histopathological damage in rats undergoing MIRI. Dex markedly augmented cell viability, while suppressing cell apoptosis and expressions of NLRP3, cleaved-caspase-1, ASC, GSDMD, IL-1β, and IL-18 in H9c2 cells subjected to H/R injury. MiR-665 was significantly upregulated, MEF2D and Nrf2 downregulated following H/R, whereas Dex preconditioning reversed these changes. MEF2D was validated to be a target gene of miR-665. Overexpression of miR-665 decreased the expression of MEF2D and blunted the protective effects of Dex in H9c2 cells. Moreover, the functional rescue experiment further verified that Dex regulated MEF2D/Nrf2 pathway via miR-665. In conclusion, Dex mitigates MIRI through inhibiting pyroptosis via regulating miR-665/MEF2D/Nrf2 axis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.115255DOI Listing

Publication Analysis

Top Keywords

mir-665/mef2d/nrf2 axis
8
dex
8
effects dex
8
cell viability
8
mir-665 mef2d
8
mef2d validated
8
dex preconditioning
8
h9c2 cells
8
mir-665
6
miri
5

Similar Publications

The current study intended to delve into the mechanisms of dexmedetomidine (Dex) in regulating myocardial pyroptosis against myocardial ischemia/reperfusion injury (MIRI). The rat MIRI models were induced by ligation/release of the coronary artery in vivo and Langendorff perfusion ex vivo. Hemodynamic parameters, infarction sizes, and histopathological changes were assessed to understand the effects of Dex on MIRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!