FurC (PerR, Peroxide Response Regulator) from Anabaena sp. PCC 7120 (also known as Nostoc sp. PCC 7120) is a master regulator engaged in the modulation of relevant processes including the response to oxidative stress, photosynthesis and nitrogen fixation. Previous differential gene expression analysis of a furC-overexpressing strain (EB2770FurC) allowed the inference of a putative FurC DNA-binding consensus sequence. In the present work, more data concerning the regulon of the FurC protein were obtained through the searching of the putative FurC-box in the whole Anabaena sp. PCC 7120 genome. The total amount of novel FurC-DNA binding sites found in the promoter regions of genes with known function was validated by electrophoretic mobility shift assays (EMSA) identifying 22 new FurC targets. Some of these identified targets display relevant roles in nitrogen fixation (hetR and hgdC) and carbon assimilation processes (cmpR, glgP1 and opcA), suggesting that FurC could be an additional player for the harmonization of carbon and nitrogen metabolisms. Moreover, differential gene expression of a selection of newly identified FurC targets was measured by Real Time RT-PCR in the furC-overexpressing strain (EB2770FurC) comparing to Anabaena sp. PCC 7120 revealing that in most of these cases FurC could act as a transcriptional activator.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406281PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289761PLOS

Publication Analysis

Top Keywords

pcc 7120
20
anabaena pcc
12
furc perr
8
nostoc pcc
8
furc
8
nitrogen fixation
8
differential gene
8
gene expression
8
furc-overexpressing strain
8
strain eb2770furc
8

Similar Publications

R-DeeP/TripepSVM identifies the RNA-binding OB-fold-like protein PatR as regulator of heterocyst patterning.

Nucleic Acids Res

December 2024

Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.

RNA-binding proteins (RBPs) are central components of gene regulatory networks. The differentiation of heterocysts in filamentous cyanobacteria is an example of cell differentiation in prokaryotes. Although multiple non-coding transcripts are involved in this process, no RBPs have been implicated thus far.

View Article and Find Full Text PDF

All1750 of Anabaena PCC 7120 encodes a novel NAD-dependent amine dehydrogenase having broad substrate range.

Int J Biol Macromol

December 2024

Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:

Native amine dehydrogenases (AmDHs) are rare and typically have narrow substrate specificity and low processivity. Therefore, they are often modified using protein engineering for industrial and pharmaceutical applications. This study presents identification and characterization of a novel native amine dehydrogenase (AmDH) encoding WD40 protein (All1750) from Anabaena PCC 7120.

View Article and Find Full Text PDF

ThyD Is a Thylakoid Membrane Protein Influencing Cell Division and Acclimation to High Light in the Multicellular Cyanobacterium Anabaena sp. Strain PCC 7120.

Mol Microbiol

December 2024

Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain.

Cyanobacteria developed oxygenic photosynthesis and represent the phylogenetic ancestors of chloroplasts. The model strain Anabaena sp. strain PCC 7120 grows as filaments of communicating cells and can form heterocysts, cells specialized for N fixation.

View Article and Find Full Text PDF

The LysR-type transcriptional factor PacR controls heterocyst differentiation and C/N metabolism in the cyanobacterium Anabaena PCC 7120.

Microbiol Res

January 2025

State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China. Electronic address:

PacR (All3953) has previously been identified as a global transcriptional regulator of carbon assimilation in cyanobacteria. In the facultative diazotrophic and filamentous cyanobacterium Anabaena PCC 7120 (Anabaena), inactivation of pacR has been shown to affect cell growth under various conditions. Nitrogen fixation in Anabaena occurs in heterocysts, cells differentiated semiregularly along the filaments following deprivation of combined nitrogen such as nitrate or ammonium.

View Article and Find Full Text PDF

CRISPR/Cas12a-based genome editing for cyanophage of sp.

Synth Syst Biotechnol

October 2024

Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Efforts have been conducted on cyanobacterial genome editing, yet achieving genome editing in cyanophages remains challenging. Editing cyanophage genomes is crucial for understanding and manipulating their interactions with cyanobacterial hosts, offering potential solutions for controlling cyanobacterial blooms. In this study, we developed a streamlined CRISPR-Cas12a-based method for efficient cyanophage genome editing and then applied this method to the cyanophages A-1(L) and A-4(L) of sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!