Blocked Autophagy is Involved in Layered Double Hydroxide-Induced Repolarization and Immune Activation in Tumor-Associated Macrophages.

Adv Healthc Mater

Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, P. R. China.

Published: December 2023

Tumor-associated macrophages (TAMs) are important immune cells in the tumor microenvironment (TME). The polar plasticity of TAMs makes them important targets for improving the immunosuppressive microenvironment of tumors. The previous study reveals that layered double hydroxides (LDHs) can effectively promote the polarization of TAMs from the anti-inflammatory M2 type to the pro-inflammatory M1 type. However, their mechanisms of action remain unexplored. This study reveals that LDHs composed of different cations exhibit distinct abilities to regulate the polarity of TAMs. Compared to Mg-Fe LDH, Mg-Al LDH has a stronger ability to promote the repolarization of TAMs from M2 to M1 and inhibit the formation of myeloid-derived suppressor cells (MDSCs). In addition, Mg-Al LDH restrains the growth of tumors in vivo and promotes the infiltration of activated immune cells into the TME more effectively. Interestingly, Mg-Al LDH influences the autophagy of TAMs; this negatively correlates with the pro-inflammatory ability of TAMs. Therefore, LDHs exert their polarization ability by inhibiting the autophagy of TAMs, and this mechanism might be related to the ionic composition of LDHs. This study lays the foundation for optimizing the performance of LDH-based immune adjuvants, which display excellent application prospects for tumor immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202301471DOI Listing

Publication Analysis

Top Keywords

mg-al ldh
12
layered double
8
tumor-associated macrophages
8
tams
8
immune cells
8
study reveals
8
autophagy tams
8
blocked autophagy
4
autophagy involved
4
involved layered
4

Similar Publications

Comparative study of Mg/Al-LDH and Mg/Fe-LDH on adsorption and loss control of 2,4-dichlorophenoxyacetic acid.

Adv Biotechnol (Singap)

January 2025

School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.

Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.

View Article and Find Full Text PDF

With high microporosity, good dispersibility, excellent specific surface area and large content surface functional group, hydrochar demonstrates significant advantages and strong affinity towards pollutants in water. Modification method plays a significant role for anion adsorption by modified hydrochar, layered double hydroxide (LDH) modified hydrocarbons (Mg/Al-LDH@HC-HCl) have been synthesized through a one-step hydrothermal approach and activated with hydrochloric acid in this paper. The physical and chemical characteristics of the hydrochar, both before and after modification, are analyzed using BET, SEM-EDS, TEM, XRD, FTIR, and XPS to explore the phosphate adsorption mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • The study developed GG/SA/Mg-Al-LDH composite microspheres (G-LDH) using natural polymers, which significantly improved adsorption of Congo red and hexavalent chromium compared to traditional Mg/Al-LDH.
  • G-LDH demonstrated an average particle size of 400-900 nm and a unique microsphere shape, with high adsorption capacities of 361.6 mg/g for Congo red and 461.7 mg/g for chromium solutions.
  • The adsorption behavior of G-LDH aligns with the Langmuir isotherm model, indicating an efficient, spontaneous process suitable for low-cost water treatment applications.
View Article and Find Full Text PDF

Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment.

View Article and Find Full Text PDF

Effective uranium (U) capture is required for the remediation of contaminated solutes associated with the nuclear fuel cycle, including fuel reprocessing effluents, decommissioning, or nuclear accident cleanup. Here, interactions between uranyl cations (UO ) and a Mg-Al layered double hydroxide (LDH) were investigated using two types of uranyl-bearing LDH colloids. The first (ULDH) was synthesized by coprecipitation with 10% of Mg substituted by UO .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!