Agriculture is the most dominant land use globally and is projected to increase in the future to support a growing human population but also threatens ecosystem structure and services. Bacteria mediate numerous biogeochemical pathways within ecosystems. Therefore, identifying linkages between stressors associated with agricultural land use and responses of bacterial diversity is an important step in understanding and improving resource management. Here, we use the Mississippi Alluvial Plain (MAP) ecoregion, a highly modified agroecosystem, as a case study to better understand agriculturally associated drivers of stream bacterial diversity and assembly mechanisms. In the MAP, we found that planktonic bacterial communities were strongly influenced by salinity. Tolerant taxa increased with increasing ion concentrations, likely driving homogenous selection which accounted for ~90% of assembly processes. Sediment bacterial phylogenetic diversity increased with increasing agricultural land use and was influenced by sediment particle size, with assembly mechanisms shifting from homogenous to variable selection as differences in median particle size increased. Within individual streams, sediment heterogeneity was correlated with bacterial diversity and a subsidy-stress relationship along the particle size gradient was observed. Planktonic and sediment communities within the same stream also diverged as sediment particle size decreased. Nutrients including carbon, nitrogen, and phosphorus, which tend to be elevated in agroecosystems, were also associated with detectable shifts in bacterial community structure. Collectively, our results establish that two understudied variables, salinity and sediment texture, are the primary drivers of bacterial diversity within the studied agroecosystem, whereas nutrients are secondary drivers. Although numerous macrobiological communities respond negatively, we observed increasing bacterial diversity in response to agricultural stressors including salinization and sedimentation. Elevated taxonomic and phylogenetic bacterial diversity likely increases the probability of detecting community responses to stressors. Thus, bacteria community responses may be more reliable for establishing water quality goals within highly modified agroecosystems that have experienced shifting baselines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.16905 | DOI Listing |
J Virol
December 2024
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, Beijing, China.
Unlabelled: Quorum sensing (QS) can regulate diverse critical phenotypic responses in (), enabling bacterial adaptation to external environmental fluctuations and optimizing population advantages. While there is emerging evidence of QS's involvement in influencing phage infections, our current understanding remains limited, necessitating further investigation. In this study, we isolated and characterized a novel phage designated as BUCT640 that infected PAO1.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands.
Metagenomics has revealed the incredible diversity of phages within the human gut. However, very few of these phages have been subjected to in-depth experimental characterization. One promising method of obtaining novel phages for experimental characterization is through induction of the prophages integrated into the genomes of cultured gut bacteria.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Microbiological Sciences Department, North Dakota State University, Fargo, North Dakota, USA.
is an important bacterial pathogen implicated in infections such as mastitis, metritis, pneumonia, and liver abscesses in both domestic and wild animals, as well as endocarditis and prosthetic joint infections in humans. Understanding the genomic and metabolic features that enable to colonize different anatomical sites within a host and its inter-kingdom transmission and survival is important for the effective control of this pathogen. We employed whole-genome sequencing, phenotype microarrays, and antimicrobial susceptibility testing to identify genomic, metabolic and phenotypic features, and antimicrobial resistance (AMR) genes in recovered from different livestock, companion, and wildlife animals.
View Article and Find Full Text PDFmSphere
December 2024
Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.
Unlabelled: Thousands of complete genome sequences for strains of a species that are now available enable the advancement of pangenome analytics to a new level of sophistication. We collected 2,377 publicly available complete genomes of for detailed pangenome analysis. The core genome and accessory genomes consisted of 2,398 and 5,182 genes, respectively.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland.
Acne vulgaris (AV) is a chronic inflammatory condition of the pilosebaceous units characterized by multiple immunologic, metabolic, hormonal, genetic, psycho-emotional dysfunctions, and skin microbiota dysbiosis. The latter is manifested by a decreased population (phylotypes, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!