Polyetheretherketone (PEEK) is a promising material for use in orthopedic implants, but its bio-inert character and lack of antibacterial activity limit its applications in bone repair. In the present study, considering the advantages of PEEK in self-initiated graft polymerization and of hydrogels in bone tissue engineering, we constructed a hydrogel coating (GPL) consisting of Gelatin methacryloyl (GelMA), methacrylamide-modified ε-poly-l-lysine (ε-PLMA) and Laponite on PEEK through UV-initiated crosslinking. The coating improved the hydrophilicity of PEEK, and the coating degraded slowly so that approximately 80% was retained after incubation in PBS for 8 weeks. In vitro studies revealed that as compared to culturing on PEEK, culturing on PEEK-GPL led to enhanced viability and adhesion of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs). Due to the synergistic effect of the micron-scale three-dimensional surface and Laponite, PEEK-GPL exhibited a significantly improved induction of osteogenic differentiation of hWJ-MSCs compared to PEEK, as demonstrated by increased alkaline phosphatase activity, matrix mineralization, and expression of osteogenesis-related genes. Furthermore, PEEK-GPL showed antibacterial activity upon contact with Staphylococcus aureus and Escherichia coli, and this activity would be maintained before complete degradation of the hydrogel because the ε-PLMA was cross-linked covalently into the coating. Thus, PEEK-GPL achieved both osteogenesis and infection prevention in a single simple step, providing a feasible approach for the extensive use of PEEK in bone implants.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.37589DOI Listing

Publication Analysis

Top Keywords

hydrogel coating
8
antibacterial activity
8
peek
7
coating
5
enhanced osteogenic
4
osteogenic antibacterial
4
antibacterial properties
4
properties polyetheretherketone
4
polyetheretherketone ultraviolet-initiated
4
ultraviolet-initiated grafting
4

Similar Publications

The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds.

View Article and Find Full Text PDF

Hydrogel coils in intracranial aneurysm treatment: a multicenter, prospective, randomized open-label trial.

J Neurosurg

January 2025

19Division of Medical Statistics, Division of Data Science, Foundation for Biomedical Research and Innovation at Kobe; and.

Objective: Studies have demonstrated the effectiveness of hydrogel-coated coils (HGCs) to achieve the composite endpoint of decreased recanalization rates and greater safety. Herein, the authors aimed to assess the true ability of second-generation HGCs to prevent recanalization.

Methods: This randomized controlled study, the HYBRID (Hydrocoil Versus Bare Platinum Coil in Recanalization Imaging Data) trial, comparing HGCs with bare platinum coils (BPCs), was conducted in 43 Japanese institutions.

View Article and Find Full Text PDF

Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing.

Theranostics

January 2025

Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.

Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.

View Article and Find Full Text PDF

Quantitative Assessment of Microbial Transmission onto Environmental Surfaces Using Thermoresponsive Gelatin Hydrogels as a Finger Mimetic under In Situ-Mimicking Conditions.

Adv Healthc Mater

January 2025

Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.

Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions.

View Article and Find Full Text PDF

The increasing demand for energy in cooling systems due to global warming presents a significant challenge. Conventional air-conditioning methods exacerbate climate change by contributing to heightened carbon emissions. Glass facades, renowned in modern architecture for their versatility and aesthetic appeal, inadvertently trap solar radiation, resulting in heat buildup and the greenhouse effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!