A new SPRING in lipid metabolism.

Curr Opin Lipidol

Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 15, Amsterdam, the Netherlands.

Published: October 2023

Purpose Of Review: The SREBP transcription factors are master regulators of lipid homeostasis owing to their role in controlling cholesterol and fatty acid metabolism. The core machinery required to promote their trafficking and proteolytic activation has been established close to 20 years ago. In this review, we summarize the current understanding of a newly identified regulator of SREBP signaling, SPRING (formerly C12ORF49), its proposed mechanism of action, and its role in lipid metabolism.

Recent Findings: Using whole-genome functional genetic screens we, and others, have recently identified SPRING as a novel regulator of SREBP signaling. SPRING is a Golgi-resident single-pass transmembrane protein that is required for proteolytic activation of SREBPs in this compartment. Mechanistic studies identified regulation of S1P, the protease that cleaves SREBPs, and control of retrograde trafficking of the SREBP chaperone SCAP from the Golgi to the ER as processes requiring SPRING. Emerging studies suggest an important role for SPRING in regulating circulating and hepatic lipid levels in mice and potentially in humans.

Summary: Current studies support the notion that SPRING is a novel component of the core SREBP-activating machinery. Additional studies are warranted to elucidate its role in cellular and systemic lipid metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MOL.0000000000000894DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
8
proteolytic activation
8
regulator srebp
8
srebp signaling
8
signaling spring
8
spring novel
8
spring
7
spring lipid
4
metabolism purpose
4
purpose review
4

Similar Publications

We and others previously found that a misannotated long noncoding RNA encodes for a conserved mitochondrial transmembrane microprotein named Mitoregulin (Mtln). Beyond an established role for Mtln in lipid metabolism, Mtln has been shown to broadly influence mitochondria, boosting respiratory efficiency and Ca retention capacity, while lowering ROS, yet the underlying mechanisms remain unresolved. Prior studies have identified possible Mtln protein interaction partners; however, a lack of consensus persists, and no claims have been made about Mtln's structure.

View Article and Find Full Text PDF

Prospects of elafibranor in treating alcohol-associated liver diseases.

World J Gastroenterol

January 2025

School of Basic Medicine, Qilu Medical University, Zibo 255300, Shandong Province, China.

Alcohol-related liver disease (ALD), which is induced by excessive alcohol consumption, is a leading cause of liver-related morbidity and mortality. ALD patients exhibit a spectrum of liver injuries, including hepatic steatosis, inflammation, and fibrosis, similar to symptoms of nonalcohol-associated liver diseases such as primary biliary cholangitis, metabolic dysfunction-associated steatotic liver disease, and nonalcoholic steatohepatitis. Elafibranor has been approved for the treatment of primary biliary cholangitis and has been shown to improve symptoms in both animal models and cell models of metabolic dysfunction-associated steatotic liver disease and nonalcoholic steatohepatitis.

View Article and Find Full Text PDF

The therapeutic potential of apigenin against atherosclerosis.

Heliyon

January 2025

Sinopharm Dongfeng General Hospital, Hubei Clinical Research Center of Hypertension, Hubei University of Medicine, Shiyan, 442008, China.

Apigenin is a natural flavonoid abundantly found in fruits, vegetables, and medicinal plants. It possesses protective effects against cancer, metabolic syndrome, dyslipidemia, etc. Atherosclerosis, a chronic immune-mediated inflammatory disease, is the underlying cause of coronary heart disease, stroke, and myocardial infarction.

View Article and Find Full Text PDF

Background: Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns.

Methods: Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines.

View Article and Find Full Text PDF

Selenium enrichment enhances the alleviating effect of GG on alcoholic liver injury in mice.

Curr Res Food Sci

December 2024

Department of Hepatopancreatobiliary Surgery, Fujian Research Institute of Abdominal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, PR China.

Selenium-enriched probiotics have attracted much attention due to the physiological activities of both probiotics and selenium (organic selenium). In this study, we investigated the mitigating effect of selenium-enriched GG (LGG@Se) and its pathway on alcohol-induced liver injury (ALI) in mice. The results showed that LGG@Se was superior to LGG and sodium selenite in alleviating ALI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!