Background: Promoter hypermethylation is one of the enabling mechanisms of hallmarks of cancer. Tumor suppressor genes like RARB and GSTP1 have been reported as hypermethylated in breast cancer tumors compared with normal tissues in several populations. This case-control study aimed to determine the association between the promoter methylation ratio (PMR) of RARB and GSTP1 genes (separately and as a group) with breast cancer and its clinical-pathological variables in Peruvian patients, using a liquid biopsy approach.

Methods: A total of 58 breast cancer patients and 58 healthy controls, matched by age, participated in the study. We exacted cell-free DNA (cfDNA) from blood plasma and converted it by bisulfite salts. Methylight PCR was performed to obtain the PMR value of the studied genes. We determined the association between PMR and breast cancer, in addition to other clinicopathological variables. The sensitivity and specificity of the PMR of these genes were obtained.

Results: A significant association was not found between breast cancer and the RARB PMR (OR = 1.90; 95% CI [0.62-6.18]; p = 0.210) or the GSTP1 PMR (OR = 6.57; 95% CI [0.75-307.66]; p = 0.114). The combination of the RARB + GSTP1 PMR was associated with breast cancer (OR = 2.81; 95% CI [1.02-8.22]; p = 0.026), controls under 50 years old (p = 0.048), patients older than 50 (p = 0.007), and postmenopausal (p = 0.034). The PMR of both genes showed a specificity of 86.21% and a sensitivity of 31.03%.

Conclusion: Promoter hypermethylation of RARB + GSTP1 genes is associated with breast cancer, older age, and postmenopausal Peruvian patients. The methylated promoter of the RARB + GSTP1 genes needs further validation to be used as a biomarker for liquid biopsy and as a recommendation criterion for additional tests in asymptomatic women younger than 50 years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724513PMC
http://dx.doi.org/10.1002/mgg3.2260DOI Listing

Publication Analysis

Top Keywords

breast cancer
32
promoter hypermethylation
12
rarb gstp1
12
cancer
9
genes
8
gstp1 genes
8
cell-free dna
8
breast
8
pmr
8
peruvian patients
8

Similar Publications

Ultrasound-responsive nanoparticles for nitric oxide release to inhibit the growth of breast cancer.

Cancer Cell Int

December 2024

Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.

Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.

View Article and Find Full Text PDF

Targeting CDK2 to circumvent treatment resistance in HR breast cancer.

Trends Mol Med

December 2024

Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:

Genetic and epigenetic defects of the p53 system have previously been associated with resistance to CDK4/6 inhibitors in women with HR breast cancer. Recent data from Kudo et al. demonstrate that CDK2-targeting agents may offer an effective strategy to circumvent such resistance by enforcing cellular senescence downstream of RBL2 dephosphorylation.

View Article and Find Full Text PDF

Dabrafenib upregulates hypoglycosylated MUC1 and improves the therapeutic efficacy of Tn-MUC1 CAR-T cells.

Sci Bull (Beijing)

December 2024

Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:

View Article and Find Full Text PDF

Computational Pathology Detection of Hypoxia-Induced Morphological Changes in Breast Cancer.

Am J Pathol

December 2024

Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.

Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of AI in computational histopathology to evaluate hypoxia in breast cancer. Weakly Supervised Deep Learning (WSDL) models can accurately detect morphological changes associated with hypoxia in routine Hematoxylin and Eosin (H&E) whole slide images (WSI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!