Teopod1 (Tp1), Teopod2 (Tp2), and Early phase change (Epc) have profound effects on the timing of vegetative phase change in maize. Gain-of-function mutations in Tp1 and Tp2 delay all known phase-specific vegetative traits, whereas loss-of-function mutations in Epc accelerate vegetative phase change and cause shoot abortion in some genetic backgrounds. Here, we show that Tp1 and Tp2 likely represent cis-acting mutations that cause the overexpression of Zma-miR156j and Zma-miR156h, respectively. Epc is the maize ortholog of HASTY, an Arabidopsis gene that stabilizes miRNAs and promotes their intercellular movement. Consistent with its pleiotropic phenotype and epistatic interaction with Tp1 and Tp2, epc reduces the levels of miR156 and several other miRNAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542106 | PMC |
http://dx.doi.org/10.1093/g3journal/jkad179 | DOI Listing |
Sci Rep
December 2024
Hepatobiliary and Pancreatic Medical Treatment Center, People's Hospital of Xinjiang Uygur, Autonomous Region, Tianchi road, Urumqi, 830011, China.
With the advancement of precise hepatobiliary surgery concepts, the diagnostic and therapeutic approaches for hepatic echinococcosis have undergone significant transformations. However, whether these changes have correspondingly improved patient outcomes remains unclear. A retrospective analysis of these changes will provide crucial guidance for the prevention and treatment of hepatic echinococcosis.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, Centre for NEMS and Nanophotonics (CNNP), Indian Institute of Technology Madras, Chennai, 600036, India.
Transmission-type plasmonic phase metasurfaces utilizing the Pancharatnam-Berry (PB) phase require constant transmittivity with complete phase variation from 0 to 2π. Usually, this is achieved by rotating metallic nanoparticles in an otherwise uniform lattice arrangement. However, this rotation and the chosen lattice structure cause a significant change in the transmittivity, resulting in a lower intensity of light with certain phases and a higher intensity for other phases.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059, Kraków, Poland.
The concept of the symplectic covariance property of the Wigner distribution function and the symplectic invariance of the Wigner-Rényi entropies has been leveraged to estimate the interaction time of the moving quantum state in the presence of an absolutely integrable time-dependent potential. For this study, the considered scattering centre is represented initially by the Gaussian barrier. Two modifications of this potential energy are considered: a sudden change from barrier to barrier and from barrier to well.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!