Background: Birthweight is the most common and accessible parameter in assessing neonatal perinatal outcomes and in evaluating the intrauterine environment globally. Infants born too large or too small not only may alter the maternal mode of delivery but also may face other long-term disorders, such as metabolic diseases and neurodevelopmental delay. Studies have revealed different growth profiles of large-for-gestational-age and small-for-gestational-age fetuses in singleton pregnancies. However, currently, no research is focused on the growth trajectories of these infants during twin pregnancies, even though they are at a much higher risk of being small for gestational age.
Objective: This study aimed to explore fetal growth trajectories of large-for-gestational-age and small-for-gestational-age infants in twin pregnancies to provide strategies for fetal growth management.
Study Design: This was a case-control study of all noncomplicated twin pregnancies delivered after 36 weeks of gestation at the Peking University First Hospital between 2012 and 2021. Ultrasound data were recorded every 2 to 4 weeks until delivery. All the infants were divided into large-for-gestational-age, small-for-gestational-age, and appropriate-for-gestational-age groups. Longitudinal fetal growth (estimated fetal weight, abdominal circumference, etc.) was compared among the 3 groups using a linear mixed model, and other maternal and neonatal perinatal outcomes were compared. Receiver operating characteristic curves were used to explore optimal biometric parameters and gestational weeks for predicting small-for-gestational-age infants.
Results: Here, 797 pregnant patients with 1494 infants were recruited, with 59 small-for-gestational-age infants, 1335 appropriate-for-gestational-age infants, and 200 large-for-gestational-age infants. The mean birthweights were 1985.34±28.34 g in small-for-gestational-age infants, 2662.08±6.60 g in appropriate-for-gestational-age infants, and 3231.24±11.04 g in large-for-gestational-age infants. The estimated fetal weight of the 3 groups differed from each other from week 26, with the small-for-gestational-age fetuses weighing 51.946 g less and the large-for-gestational-age fetuses weighing 35.233 g more than the appropriate-for-gestational-age fetuses. This difference increased with gestation; at 39 weeks, the small-for-gestational-age fetuses weighed 707.438 g less and the large-for-gestational-age fetuses weighed 614.182 g more than the appropriate-for-gestational-age fetuses (all P<.05). The small-for-gestational-age group had a significantly higher rate of hospitalization (89.9 %) and jaundice (40.7 %) than the appropriate-for-gestational-age group, whereas the hospitalization rate in the large-for-gestational-age group was significantly lower than the appropriate-for-gestational-age group (7.5% and 2.5%; all P<.05). The fetal weight of the small-for-gestational-age infants with adverse outcomes remained near the 10th percentile of the reference and fell below the 3rd percentile at 34 weeks of gestation. The estimated fetal weight after 30 weeks of gestation had a satisfactory diagnostic value in predicting small-for-gestational-age infants. At 30, 32, 34, and 36 weeks of gestation, the areas under the curve were 0.829, 0.840, 0.929, and 0.889 respectively.
Conclusion: The growth patterns of small-for-gestational-age, appropriate-for-gestational-age, and large-for-gestational-age twin fetuses diverged from 26 weeks of gestation and continued to increase until delivery; therefore, closer monitoring is suggested from 26 weeks of gestation for those carrying small fetuses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajogmf.2023.100999 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!