A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Three-body potential and third virial coefficients for helium including relativistic and nuclear-motion effects. | LitMetric

The non-additive three-body interaction potential for helium was computed using the coupled-cluster theory and the full configuration interaction method. The obtained potential comprises an improved nonrelativistic Born-Oppenheimer energy and the leading relativistic and nuclear-motion corrections. The mean absolute uncertainty of our calculations due to the incompleteness of the orbital basis set was determined employing complete-basis-set extrapolation techniques and was found to be 1.2%. For three helium atoms forming an equilateral triangle with the side length of 5.6 bohr - a geometry close to the minimum of the total potential energy surface - our three-body potential amounts to -90.6 mK, with an estimated uncertainty of 0.5 mK. An analytic function, developed to accurately fit the computed three-body interaction energies, was chosen to correctly describe the asymptotic behavior of the three-body potential for trimer configurations corresponding to both the three-atomic and the atom-diatom fragmentation channels. For large triangles with sides , , and , the potential takes correctly into account all angular terms decaying as -l12 -m23 -n21 with + + ≤ 14 for the nonrelativistic Born-Oppenheimer energy and + + ≤ 9 for the post-Born-Oppenheimer corrections. We also developed a short-range analytic function describing the local behavior of the total uncertainty of the computed three-body interaction energies. Using both fits we calculated the third pressure and acoustic virial coefficients for helium and their uncertainties for a wide range of temperatures. The results of these calculations were compared with available experimental data and with previous theoretical determinations. The estimated uncertainties of present calculations are 3-5 times smaller than those reported in the best previous works.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp01794jDOI Listing

Publication Analysis

Top Keywords

three-body potential
12
three-body interaction
12
virial coefficients
8
coefficients helium
8
relativistic nuclear-motion
8
nonrelativistic born-oppenheimer
8
born-oppenheimer energy
8
analytic function
8
computed three-body
8
interaction energies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!