High-density assemblies or superlattice structures composed of colloidal semiconductor nanocrystals have attracted attention as key materials for next-generation photoelectric conversion devices such as quantum-dot solar cells. In these nanocrystal solids, unique transport and optical phenomena occur due to quantum coupling of localized energy states, charge-carrier hopping, and electromagnetic interactions among closely arranged nanocrystals. In particular, the photoexcited carrier dynamics in nanocrystal solids is important because it significantly affects various device parameters. In this study, we report the photoexcited carrier dynamics in a solid film of CuInS nanocrystals, which is one of the potential nontoxic substitutes with Cd- and Pb-free compositions. Meanwhile, these subjects have been extensively studied in nanocrystal solids formed by CdSe and PbS systems. A carrier-hopping mechanism was confirmed using temperature-dependent photoluminescence spectroscopy, which yielded a typical value of the photoexcited carrier-transfer rate of (2.2±0.6)×10  s by suppressing the influence of the excitation-energy transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202300029DOI Listing

Publication Analysis

Top Keywords

photoexcited carrier
12
nanocrystal solids
12
carrier dynamics
8
photoexcited
4
carrier transfer
4
transfer cuins
4
nanocrystal
4
cuins nanocrystal
4
nanocrystal assembly
4
assembly suppressing
4

Similar Publications

Photoassisted lithium-sulfur (Li-S) batteries offer a promising approach to enhance the catalytic transformation kinetics of polysulfide. However, the development is greatly hindered by inadequate photo absorption and severe photoexcited carriers recombination. Herein, a photonic crystal sulfide heterojunction structure is designed as a bifunctional electrode scaffold for photoassisted Li-S batteries.

View Article and Find Full Text PDF

This study investigates the photophysical behaviour of Mn/Fe and Mn/Sn co-doped CsPbCl3 perovskite nanocrystals (NCs) to explore carrier dynamics and dopant interactions. Using gated photoluminescence (PL) and temperature-dependent measurements, we elucidate the impact of dopant chemistry on exciton behaviour, focusing on vibrationally assisted delayed fluorescence (VADF) and energy transfer mechanisms. The efficiency of VADF is influenced by factors such as the bandgap, temperature, quantum confinement, and host composition.

View Article and Find Full Text PDF

The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (Cu/COFs) as models to modulate excitonic effects.

View Article and Find Full Text PDF

Metal-Modified Zr-MOFs with AIE Ligands for Boosting CO Adsorption and Photoreduction.

Adv Mater

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.

The design and synthesis of metal-organic frameworks (MOFs) with outstanding light-harvesting and photoexcitation for artificial photocatalytic CO reduction is an attractive but challenging task. In this work, a novel aggregation-induced emission (AIE)-active ligand, tetraphenylpyrazine (PTTBPC) is proposed and utilized for the first time to construct a Zr-MOF photocatalyst via coordination with stable Zr-oxo clusters. Zr-MOF is featured by a scu topology with a two-fold interpenetrated framework, wherein the PTTBPC ligands enable strong light-harvesting and photoexcitation, while the Zr-oxo clusters facilitate CO adsorption and activation, as well as offer potential sites for further metal modification.

View Article and Find Full Text PDF

Many applications of nanocrystals rely on their use in light detection and emission. In recent years, nanocrystals with more relaxed carrier confinement, including so-called 'bulk' and 2D implementations, have made their stake. In such systems, the charge carriers generated after (photo-)excitation are spread over a semi-continuous density of states, behaviour controlled by the carrier temperature .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!