Chronic wounds have become a significant threat to people's physical and mental health and have increased the burden of social medical care. Intelligent wound dressing (IWD) with wound condition monitoring and closed-loop on-demand drug therapy can shorten the healing process and alleviate patient suffering. However, single-function wound dressings cannot meet the current needs of chronic wound treatment. Here, a wearable IWD consisting of wound exudate management, sensor monitoring, closed-loop therapy, and flexible circuit modules is reported, which can achieve effective synergy between wound exudate management and on-demand wound therapy. The dressing is attached to the wound site, and the wound exudate is spontaneously pumped into the microfluidic channel for storage. Meanwhile, the IWD can detect the state of the wound through the temperature and humidity sensor, and use this as feedback to control the liquid metal (LM) heater through a smartphone, thereby realizing the on-demand drug release from the hydrogel. In a mouse model of infected wounds, IWD accelerates wound healing by reducing inflammatory responses, promoting angiogenesis and collagen deposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202304005 | DOI Listing |
J Environ Manage
December 2024
State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Zhongguancun South Street, Haidian District, Beijing, 100081, PR China.
Beneficial interactions between plant root exudates and the rhizosphere microbial community can alleviate the adverse effects of environmental stress on crop yields, but these interactions remain poorly understood in potato growing in drying soil. We investigated the responses of rhizosphere soil microorganisms and metabolites, and biochemical and physiological responses of two potato genotypes with contrasting drought tolerance (drought tolerant 'C93' and drought sensitive 'Favorita'), to two different irrigation treatments imposing contrasting soil water availability in the field. Deficit irrigation altered rhizosphere soil bacterial communities and metabolites of C93 more than Favorita.
View Article and Find Full Text PDFDiseases
December 2024
Department of Neurology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania.
Noncardiogenic pulmonary edema after cardiac surgery is a rare but severe complication. The etiology remains poorly understood; however, the issue may arise from multiple sources. Possible causes include a significant inflammatory response or an autoimmune process.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.
Considerable biological decline of continuously cropped alfalfa may be tightly linked to rhizosphere metabolism. However, plant-soil feedbacks and age-related metabolic changes in alfalfa stands remain unexplored. The aim of this study was to identify the linkages of rhizosphere and root metabolites, particularly autotoxins and prebiotics, to alfalfa decline under continuous cropping.
View Article and Find Full Text PDFNat Prod Res
December 2024
Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons, NMR and Molecular Imaging Laboratory, Mons, Belgium.
Propolis is a resinous material collected by different bee species from various plant exudates and used to seal holes in honeycombs, smoothen the internal walls, embalm intruders, improve health and prevent diseases. From its -hexane extract, eight compounds were isolated and characterised as: mangiferonic acid (); 1-hydroxymangiferonic acid (), new natural product; mangiferolic acid(); 27-hydroxymangiferolic acid (), reported here for the first time as propolis constituent; 27-hydroxymangiferonic acid (); -amyrin (); -amyrin () and lupeol (). The chemical structures of the isolated compounds were elucidated using spectroscopic methods, such as 1D and 2D-NMR, mass spectrometry and comparison with previous published reports.
View Article and Find Full Text PDFJ Control Release
December 2024
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China. Electronic address:
Diabetic wound infections are a frequent complication for diabetic patients, and conventional treatment for combating diabetic wound infections relies on antibiotics. However, the misuse and overuse of antibiotics have led to the emergence of drug-resistant bacteria, making these infections challenging to treat. Thus, there is an urgent need for alternative strategies to effectively manage diabetic wound infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!