Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of this study was to determine the influence that a ruminally-protected B-vitamin (RPBV) blend (containing vitamin B5, B6, B7, B9, and B12) had on growth performance, efficiency of dietary net energy utilization, carcass trait responses, and liver abscess severity and prevalence in beef steers fed a finishing diet. Steers ( = 246; initial shrunk body weight [BW] = 411 ± 25.8 kg) from two different sources, were used in a 126-d RCBD experiment. Within 48 h after arrival, steers were individually weighed and allotted to 1 of 24 pens ( = 8 to 12 steers; 8 pens per treatment) and randomly assigned to 1 of 3 treatments: (1) No RPBV; (2) RPBV1 at 1 g/steer d; 3) RPBV2 at 2 g/steer d. During the first 14 d, cattle received two transition diets with increasing concentrate. From days 15 to 126, cattle were fed the final diet containing 53% dry-rolled corn; 23% corn silage; 20% MDGS; and 4% suspended supplement. On the first 28 d, steers of RPBV1 had a greater average daily gain (ADG) and better feed conversion (G:F), both by 9% (quadratic effect, ≤ 0.02). However, cumulatively, no differences ( ≥ 0.13) among treatments were found for dry-matter intake (DMI), live final BW, ADG, or G:F. Carcass-adjusted final BW, ADG, and G:F were not influenced by treatment ( ≥ 0.59). Additionally, carcass weight, dressing percentage, marbling score, kidney-pelvic-heart fat, or BW at 28% empty body fat did not differ among treatments ( ≥ 0.11). Ribeye area (REA) was altered (quadratic effect, = 0.02) by treatment; steers from RPBV1 had decreased REA compared to others. Additionally, calculated yield grade (YG) and calculated retail yield (RY) were altered (quadratic effect, ≤ 0.01) by treatment; steers from RPBV1 had increased YG and decreased RY compared to others. Estimated empty body fatness tended ( = 0.06) to be greater from steers-fed RPBV compared to control. Overall USDA YG distribution was altered by dietary treatment ( = 0.01). The proportions of YG1 and YG5 carcasses were unaffected by treatment, but there was a shift in the proportion of carcasses that graded YG2, YG3, and YG4 among treatments. Distribution of USDA Quality Grade was not altered by treatment ( = 0.53). No treatment differences in liver abscess incidence or severity were observed ( = 0.13). The use of RPBV altered carcass muscularity and rib fat accumulation affecting the overall YG distribution. However, RPBV did not appreciably influence any cumulative growth performance measures or liver abscess outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400134 | PMC |
http://dx.doi.org/10.1093/tas/txad084 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!