Antimicrobial peptides commonly act by disrupting bacterial membranes, but also frequently damage mammalian membranes. Deciphering the rules governing membrane selectivity is critical to understanding their function and enabling their therapeutic use. Past attempts to decipher these rules have failed because they cannot interrogate adequate peptide sequence variation. To overcome this problem, we develop deep mutational surface localized antimicrobial display (dmSLAY), which reveals comprehensive positional residue importance and flexibility across an antimicrobial peptide sequence. We apply dmSLAY to Protegrin-1, a potent yet toxic antimicrobial peptide, and identify thousands of sequence variants that positively or negatively influence its antibacterial activity. Further analysis reveals that avoiding large aromatic residues and eliminating disulfide bound cysteine pairs while maintaining membrane bound secondary structure greatly improves Protegrin-1 bacterial specificity. Moreover, dmSLAY datasets enable machine learning to expand our analysis to include over 5.7 million sequence variants and reveal full Protegrin-1 mutational profiles driving either bacterial or mammalian membrane specificity. Our results describe an innovative, high-throughput approach for elucidating antimicrobial peptide sequence-structure-function relationships which can inform synthetic peptide-based drug design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402124 | PMC |
http://dx.doi.org/10.1101/2023.07.28.551017 | DOI Listing |
Inflamm Res
January 2025
Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd, Nashville, TN, USA.
Background: The aberrant expression of α defensin 5 (DEFA5) protein in colonic inflammatory bowel diseases (IBDs) underlies the distinct pathogenesis of Crohn's colitis (CC). It can serve as a biomarker for differentiating CC from Ulcerative colitis (UC), particularly in Indeterminate colitis (IC) cases into UC and CC. We evaluated the specificity of commercially available anti-DEFA5 antibodies, emphasizing the need to further validate their appropriateness for a given application and highlighting the necessity for novel antibodies.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
MTA-HUN-REN TTK Lendület "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary.
The aim of the research is to increase the applicability of lipopeptides as drugs. To this end, non-ionic triblock copolymers, namely poloxamers, were applied. The physico-chemical properties of poloxamers vary depending on the length of the blocks.
View Article and Find Full Text PDFFront Antibiot
January 2025
Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany.
Because of the global spread of multi- and pan-resistant bacteria, there is a need to identify, research, and develop new strategies to combat these pathogens. In a previous proof-of-concept study, we presented an innovative strategy by genetically modifying lytic T7 bacteriophages. We integrated DNA fragments encoding for derivatives of the antimicrobial peptide (AMP) apidaecin into the phage genome to induce the production and release of apidaecin within the T7 infection cycle, thereby also targeting phage-resistant bacteria.
View Article and Find Full Text PDFBull Entomol Res
January 2025
Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia.
The effect of on the viability and antimicrobial activity of the ectoparasitoid was evaluated in laboratory experiments. Two lines of the parasitoid, -infected (W+) and -free (W-), were used. Parasitoid larvae were fed with a host orally infected with a sublethal dose of (Bt) and on the host uninfected with Bt.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Animals infected with mycoplasma pneumoniae not only develop respiratory diseases, but also cause digestive diseases through the lung-gut axis mediated by the intestinal flora, and vice versa. Antimicrobial peptides are characterized by their bactericidal, anti-inflammatory, and intestinal flora-regulating properties. However, the effect of cecropin AD (CAD) against mycoplasma pneumonia remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!