Unlabelled: Adolescent development is characterized by an improvement in cognitive abilities, such as working memory. Neurophysiological recordings in a non-human primate model of adolescence have revealed changes in neural activity that mirror improvement in behavior, including higher firing rate during the delay intervals of working memory tasks. The laminar distribution of these changes is unknown. By some accounts, persistent activity is more pronounced in superficial layers, so we sought to determine whether changes are most pronounced there. We therefore analyzed neurophysiological recordings from neurons recorded in the young and adult stage, at different cortical depths. Superficial layers exhibited increased baseline firing rate in the adult stage. Unexpectedly, changes in persistent activity were most pronounced in the middle layers. Finally, improved discriminability of stimulus location was most evident in the deeper layers. These results reveal the laminar pattern of neural activity maturation that is associated with cognitive improvement.
New And Noteworthy: Structural brain changes are evident during adolescent development particularly in the cortical thickness of the prefrontal cortex, at a time when working memory ability increases markedly. The depth distribution of neurophysiological changes during adolescence is not known. Here we show that neurophysiological changes are not confined to superficial layers, which have most often been implicated in the maintenance of working memory. Contrary to expectations, greatest changes were evident in intermediate layers of the prefrontal cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402138 | PMC |
http://dx.doi.org/10.1101/2023.07.28.550982 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!