Obesity increases the morbidity and mortality of traumatic brain injury (TBI). We performed a detailed analysis of transcriptomic changes in the brain and adipose tissue to examine the interactive effects between high-fat diet-induced obesity (DIO) and TBI in relation to central and peripheral inflammatory pathways, as well as neurological function. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. Combined TBI and HFD resulted in additive dysfunction in the Y-Maze, novel object recognition (NOR), and Morris water maze (MWM) cognitive function tests. We also performed high-throughput transcriptomic analysis using Nanostring panels of cellular compartments in the brain and total visceral adipose tissue (VAT), followed by unsupervised clustering, principal component analysis, and IPA pathway analysis to determine shifts in gene expression programs and molecular pathway activity. Analysis of cellular populations in the cortex and hippocampus as well as in visceral adipose tissue during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in select gene expression signatures and pathways. These data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and visceral adipose tissue macrophages, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue macrophages, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402152 | PMC |
http://dx.doi.org/10.1101/2023.07.28.550986 | DOI Listing |
J Craniofac Surg
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University.
Lipomas are benign soft tissue tumors composed of mature adipocytes, commonly found in subcutaneous tissues. Despite their prevalence in various body regions, they are relatively rare in the oral and maxillofacial regions. This study retrospectively analyzed the clinical and imaging characteristics, as well as the treatment outcomes of 57 patients diagnosed with lipoma.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Clinical Nutrition, Tongde Hospital of Zhejiang Province, Hangzhou, China.
There are limited studies on the phase angle (PhA) and sarcopenic obesity (SO) in the Chinese population. This study aimed to establish 50 kHz-PhA reference data for SO population, and to evaluate the correlation between 50 kHz-PhA and SO. A total of 10,312 participants including 5415 men and 4897 women were enrolled in this study, and their resistance and reactance at 50 kHz, and body composition parameters were measured a segmental multifrequency bioelectrical impedance analysis device (InBody 720).
View Article and Find Full Text PDFSci Immunol
January 2025
Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
Regulatory T cells (T) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT T under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2 VAT T subsets.
View Article and Find Full Text PDFActa Diabetol
January 2025
Division of Life Sciences and Medicine, Department of Endocrinology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China.
Background: Visceral adipose tissue (VAT) is known to play a role in the development of metabolic and cardiovascular disease (CVD). However, the age- and sex-specific associations between VAT and these diseases remain unclear.
Methods: In this cross-sectional study, 1,150 participants (39.
Am J Physiol Regul Integr Comp Physiol
December 2024
Curtin University, Curtin Medical Research Institute (Bentley, WA, AUSTRALIA).
Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!