AI Article Synopsis

  • - The alkaloid SN38 is an effective cancer treatment but is poorly soluble in water, leading to limited clinical use and low conversion rates to the active form in existing drugs like irinotecan, making it necessary to find better delivery methods.
  • - Researchers have developed a new technology called single protein encapsulation (SPE) that enhances the delivery and effectiveness of cancer drugs, successfully creating two formulations of SPESN38 to treat colorectal cancer and soft tissue sarcoma in mouse models.
  • - Initial results show that these SPESN38 formulations can dissolve in water and achieve significant dosages, with promising pharmacokinetic profiles and maximum tolerated doses indicating potential for future clinical trials.

Article Abstract

Background: The alkaloid camptothecin analog SN38 is a potent antineoplastic agent, but cannot be used directly for clinical application due to its poor water solubility. Currently, the prodrug approach on SN38 has resulted in 3 FDA-approved cancer therapeutics, irinotecan, ONIVYDE, and Trodelvy. However, only 2-8% of irinotecan can be transformed enzymatically into the active metabolite SN38, which severely limits the drug's efficacy. While numerous drug delivery systems have been attempted to achieve effective SN38 delivery, none have produced drug products with antitumor efficacy better than irinotecan in clinical trials. Therefore, novel approaches are urgently needed for effectively delivering SN38 to cancer cells with better efficacy and lower toxicity.

Methods: Based on the unique properties of human serum albumin (HSA), we have developed a novel single protein encapsulation (SPE) technology to formulate cancer therapeutics for improving their pharmacokinetics (PK) and antitumor efficacy and reducing their side effects. Previous application of SPE technology to doxorubicin (DOX) formulation has led to a promising drug candidate SPEDOX-6 (FDA IND #, 152154), which will undergo a human phase I clinical trial. Using the same SPE platform on SN38, we have now produced two SPESN38 complexes, SPESN38-5 and SPESN38-8. We conducted their pharmacological evaluations with respect to maximum tolerated dose, PK, and efficacy against colorectal cancer (CRC) and soft tissue sarcoma (STS) in mouse models.

Results: The lyophilized SPESN38 complexes can dissolve in aqueous media to form clear and stable solutions. Maximum tolerated dose (MTD) of SPESN38-5 is 250 mg/kg by oral route (PO) and 55 mg/kg by intravenous route (IV) in CD-1 mice. SPESN38-8 has the MTD of 45 mg/kg by IV in the same mouse model. PK of SPESN38-5 by PO at 250 mg/kg gave mouse plasma AUC of 0.0548 and 4.5007 (nmol × h/mL) for SN38 and SN38 glucuronidate (SN38G), respectively, with a surprisingly high molar ratio of SN38G:SN38 = 82:1. However, PK of SPESN38-5 by IV at 55 mg/kg yielded much higher mouse plasma AUC of 18.80 and 27.78 nmol × h/mL for SN38 and SN38G, producing a much lower molar ratio of SN38G:SN38 = 1.48:1. Antitumor efficacy of SPESN38-5 and irinotecan (control) was evaluated against HCT-116 CRC xenograft tumors. The data indicates that SPESN38-5 by IV at 55 mg/kg is more effective in suppressing HCT-116 tumor growth with lower systemic toxicity compared to irinotecan at 50 mg/kg. Additionally, SPESN38-8 and DOX (control) by IV were evaluated in the SK-LMS-1 STS mouse model. The results show that SPESN38-8 at 33 mg/kg is highly effective for inhibiting SK-LMS-1 tumor growth with low toxicity, in contrast to DOX's insensitivity to SK-LMS-1 with high toxicity.

Conclusion: SPESN38 complexes provide a water soluble SN38 formulation. SPESN38-5 and SPESN38-8 demonstrate better PK values, lower toxicity, and superior antitumor efficacy in mouse models, compared with irinotecan and DOX.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402254PMC
http://dx.doi.org/10.21203/rs.3.rs-3154635/v1DOI Listing

Publication Analysis

Top Keywords

antitumor efficacy
16
spesn38 complexes
12
sn38
11
single protein
8
cancer therapeutics
8
spe technology
8
spesn38-5 spesn38-8
8
maximum tolerated
8
tolerated dose
8
sts mouse
8

Similar Publications

Combining radiotherapy with targeted therapy benefits patients with advanced epidermal growth factor receptor-mutated non-small cell lung cancer (EGFRm NSCLC). However, the optimal strategy to combine EGFR tyrosine kinase inhibitors (TKIs) with radiotherapy for maximum efficacy and minimal toxicity is still uncertain. Notably, EVs, which serve as communication mediators among tumor cells, play a crucial role in the anti-tumor immune response.

View Article and Find Full Text PDF

Rapidly Manufactured CAR-T with Conserved Cell Stemness and Distinctive Cytokine-Secreting Profile Shows Improved Anti-Tumor Efficacy.

Vaccines (Basel)

November 2024

Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China.

The emergence of chimeric antigen receptor T-cell (CAR-T) immunotherapy holds great promise in treating hematologic malignancies. While advancements in CAR design have enhanced therapeutic efficacy, the time-consuming manufacturing process has not been improved in the commercial production of CAR-T cells. In this study, we developed a "DASH CAR-T" process to manufacture CAR-T cells in 72 h and found the excelling anti-tumor efficacy of DASH CAR-T cells over conventionally manufactured CAR-T cells.

View Article and Find Full Text PDF

C118P Suppresses Gastric Cancer Growth via Promoting Autophagy-Lysosomal Degradation of RAB1A.

Pharmaceutics

December 2024

New Drug Screening and Pharmacodynamics Evaluation Center, National Key Laboratory for Multi-Target Natural Drugs, China Pharmaceutical University, Nanjing 210009, China.

: Gastric cancer (GC) is the leading cause of cancer-related deaths worldwide. C118P, a microtubule inhibitor with anti-angiogenic and vascular-disrupting activities, was proven to be cytotoxic to various cancer cell lines. This study aimed to explore the anti-tumor effect of C118P against gastric cancer and identify its potential target.

View Article and Find Full Text PDF

Background: Achieving a balance between stable drug loading/delivery and on-demand drug activation/release at the target sites remains a significant challenge for nanomedicines. Carrier-free prodrug nanoassemblies, which rely on the design of prodrug molecules, offer a promising strategy to optimize both drug delivery efficiency and controlled drug release profiles.

Methods: A library of doxorubicin (DOX) prodrugs was created by linking DOX to fatty alcohols of varying chain lengths via a tumor-responsive disulfide bond.

View Article and Find Full Text PDF

A Bait-and-Hook Hydrogel for Net Tumor Cells to Enhance Chemotherapy and Mitigate Metastatic Dissemination.

Pharmaceutics

November 2024

Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.

: Lung cancer is an aggressive disease with rapid progression and a high rate of metastasis, leading to a significantly poor prognosis for many patients. While chemotherapy continues to serve as a cornerstone treatment for a large proportion of lung cancer patients, expanding preclinical and clinical evidence indicates that chemotherapy may promote tumor metastasis and cause side effects. : We develop an injectable bait-and-hook hydrogel (BH-gel) for targeted tumor cell eradication, which embedded doxorubicin liposomes as cytotoxic agents and CXCL12 as a chemoattractant to capture and kill tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!