Unlabelled: The lack of available treatments for many antimicrobial resistant infections highlights the critical need for antibiotic discovery innovation. Peptides are an underappreciated antibiotic scaffold because they often suffer from proteolytic instability and toxicity towards human cells, making use challenging. To investigate sequence factors related to serum activity, we adapt an antibacterial display technology to screen a library of peptide macrocycles for antibacterial potential directly in human serum. We identify dozens of new macrocyclic peptide antibiotic sequences and find that serum activity within our library is influenced by peptide length, cationic charge, and the number of disulfide bonds present. Interestingly, an optimized version of our most active lead peptide permeates the outer membrane of gram-negative bacteria without strong inner membrane disruption and kills bacteria slowly while causing cell elongation. This contrasts with traditional cationic antimicrobial peptides, which kill rapidly via lysis of both bacterial membranes. Notably, this optimized variant is not toxic to mammalian cells and retains its function , suggesting therapeutic promise. Our results support the use of more physiologically relevant conditions when screening peptides for antimicrobial activity which retain functionality.

Significance: Traditional methods of natural antibiotic discovery are low throughput and cannot keep pace with the development of antimicrobial resistance. Synthetic peptide display technologies offer a high-throughput means of screening drug candidates, but rarely consider functionality beyond simple target binding and do not consider retention of function . Here, we adapt a function-based, antibacterial display technology to screen a large library of peptide macrocycles directly for bacterial growth inhibition in human serum. This screen identifies an optimized non-toxic macrocyclic peptide antibiotic retaining function, suggesting this advancement could increase clinical antibiotic discovery efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10402130PMC
http://dx.doi.org/10.1101/2023.07.28.550711DOI Listing

Publication Analysis

Top Keywords

antibacterial display
12
macrocyclic peptide
12
antibiotic discovery
12
peptide
8
serum activity
8
display technology
8
technology screen
8
library peptide
8
peptide macrocycles
8
human serum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!