This study aims to evaluate the effect of ionic liquids and their structure on the mechanical (tensile bond strength (TBS) and Shore A hardness), mass change, and antifungal properties of soft denture lining material. Butyl pyridinium chloride (BPCL) and octyl pyridinium chloride (OPCL) were synthesized, characterized, and mixed in concentrations ranging from 0.65-10% w/w with a soft denture liner (Molloplast-B) and were divided into seven groups (C, BPCL1-3, and OPCL1-3). The TBS of bar-shaped specimens was calculated on a Universal Testing Machine. For Shore A hardness, disc-shaped specimens were analyzed using a durometer. The mass change (%) of specimens was calculated by the weight loss method. The antifungal potential of ionic liquids and test specimens was measured using agar well and disc diffusion methods ( ≤ 0.05). The alamarBlue assay was performed to assess the biocompatibility of the samples. The mean TBS values of Molloplast-B samples were significantly lower ( ≤ 0.05) for all groups except for OPCL1. Compared with the control, the mean shore A hardness values were significantly higher ( ≤ 0.05) for samples in groups BPCL 2 and 3. After 6 weeks, the OPCL samples showed a significantly lower ( ≤ 0.05) mass change as compared to the control. Agar well diffusion methods demonstrated a maximum zone of inhibition for 2.5% OPCL (20.5 ± 0.05 mm) after 24 h. Disc diffusion methods showed no zones of inhibition. The biocompatibility of the ionic liquid-modified sample was comparable to that of the control. The addition of ionic liquids in Molloplast-B improved the liner's surface texture, increased its hardness, and decreased its % mass change and tensile strength. Ionic liquids exhibited potent antifungal activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399165 | PMC |
http://dx.doi.org/10.1021/acsomega.3c02677 | DOI Listing |
J Am Chem Soc
January 2025
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.
Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.
View Article and Find Full Text PDFRSC Adv
January 2025
Norwegian Tribology Center, Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU) Trondheim Norway
The focus on energy efficiency to move towards a more sustainable use of resources has intensified efforts to minimize friction and wear in mechanical systems, which account for 23% of the world's energy consumption. In this study, polyoxometalate ionic liquids (POM-ILs) are introduced as environmentally acceptable lubricant additives, for their potential friction-reducing and anti-wear (AW) properties. These compounds, characterized by their complex structures and tunable properties, have been investigated for their tribological performance across base fluids of varying polarities.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou, 450001, China. Electronic address:
Food safety problem caused by aflatoxins (AFs) has become a major concern worldwide. However, due to the complexity of food matrices and the low concentration of analytes, the accurate and sensitive determination of AFs and their precursors in the biosynthetic pathway is extremely challenging, so the development of efficient sample preparation techniques has been urgently required. This paper reviews the recent advances in sample preparation based on some emerging extraction media for the determination of AFs and their precursors in different food samples, including ionic liquids (ILs) and IL-based composites, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs).
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
An investigation of the low-frequency (i.e., less than 5 THz), inter-molecular dynamics of three imidazolium-based ionic liquids-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium dicyanamide ([C4mim][DCA]), and 1-ethyl-3-methylimidazolium dicyanamide ([C2mim][DCA])-is presented using two-dimensional (2D) Raman-THz spectroscopy combined with molecular dynamics (MD) simulations.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Instituto de Física, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.
Charge layering in the close vicinity of charged interfaces is a well-known effect, extensively reported in both experiments and simulations of Room Temperature Ionic Liquids (RTILs) and concentrated electrolytes. The traditional Poisson-Fermi (PF) theory is able to successfully describe overcrowding effects but fails to reproduce charge ordering even in strong coupling regimes. Simple models, yet capable of investigating the interplay between these important interfacial phenomena, are still lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!