The use of enzymes to degrade environmental pollutants has received wide attention as an emerging green approach. Horseradish peroxidase (HRP) can efficiently catalyze the degradation of phenol in the environment; however, free HRP exhibits poor stability and temperature sensitivity and is easily deactivated, which limit its practical applications. In this study, to improve their thermal stability, HRP enzymes were immobilized on mesoporous molecular sieves (Al-MCM-41). Specifically, Al-MCM-41(W) and Al-MCM-41(H) were prepared by modifying the mesoporous molecular sieve Al-MCM-41 with glutaraldehyde and epichlorohydrin, respectively, and used as carriers to immobilize HRP on their surface, by covalent linkage, to form the immobilized enzymes HRP@Al-MCM-41(W) and HRP@Al-MCM-41(H). Notably, the maximum reaction rate of HRP@Al-MCM-41(H) was increased from 2.886 × 10 (free enzyme) to 5.896 × 10 U/min, and its half-life at 50 °C was increased from 745.17 to 1968.02 min; the thermal stability of the immobilized enzyme was also significantly improved. In addition, we elucidated the mechanism of phenol degradation by HRP, which provides a basis for the application of this enzyme to phenol degradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398862 | PMC |
http://dx.doi.org/10.1021/acsomega.3c01570 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!