AI Article Synopsis

  • Metastatic breast cancer is linked to high levels of morbidity and mortality, with a focus on how insulin resistance might impact its occurrence.
  • The study analyzed data from 150 breast cancer patients to examine the relationship between insulin resistance, measured by HOMA-IR and TyG Index, and the incidence of metastatic cancer.
  • Results indicated no significant correlation between insulin resistance metrics and the incidence of metastatic breast cancer, suggesting that insulin resistance may not be a contributing factor.

Article Abstract

Introduction: Metastatic breast cancer was associated with high morbidity and mortality. Insulin resistance was hypothesized to be related to the incidence of advanced breast cancer. Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and Triglyceride/Glucose Index (TyG Index) are two metrics used to measure the degree of insulin resistance. This study aims to assess the relationship between the incidence of metastatic breast cancer and insulin resistance as reflected by both metrics.

Material And Methods: This study is a cross-sectional study involving 150 primary invasive breast cancer patients recruited from two hospitals of different sectors from August 2019 to April 2020. Patients with double cancer and autoimmune disorder were excluded from this study. Data obtained from the patients include age, body mass index (BMI), type 2 diabetes mellitus (T2DM) status and treatment, and low-density lipoprotein (LDL) cholesterol. The electronic medical records (EMR) was consulted to find histopathology examination result, cancer staging, and any missing data. The association between HOMA-IR and TyG with metastatic incidence was analyzed using either the Mann-Whitney test (for non-normally distributed data) or the independent-sample -test (for normally distributed data).

Results: The mean of the TyG index is 8.60, and the median of HOMA-IR is 1.22. We found no significant correlation between both variables and the incidence of metastases.

Conclusion: Insulin resistance was not associated with metastatic breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404037PMC
http://dx.doi.org/10.2147/IJGM.S421558DOI Listing

Publication Analysis

Top Keywords

insulin resistance
24
breast cancer
24
metastatic breast
12
metastatic incidence
8
primary invasive
8
invasive breast
8
cancer
8
cross-sectional study
8
insulin
6
resistance
6

Similar Publications

Background: Accurate distinction between stroke etiologic subtypes is critical for physicians to provide tailored treatment. The triglyceride-glucose (TyG) index, a marker of insulin resistance, has been associated with stroke risk but its role in distinguishing stroke etiologic subtypes remains unclear. We aimed to assess the TyG index's ability to differentiate cardioembolic (CE) from non-cardioembolic (NCE) strokes.

View Article and Find Full Text PDF

Background: The triglycerides to Apolipoprotein A1 ratio (TG/APOA1) holds promise to be a more valuable index of insulin resistance for the diagnosis of metabolic dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetes mellitus (T2DM). This study aims to evaluate the correlation between TG/APOA1 and MAFLD, as well as compare the efficacy of TG/APOA1 with triglycerides to high-density lipoprotein cholesterol ratio (TG/HDL-c) and triglyceride-glucose (TyG) index in identifying MAFLD among individuals with T2DM.

Method: This study consecutively recruited 779 individuals with T2DM for the investigation.

View Article and Find Full Text PDF

Background: Body mass index (BMI) consistently correlates with the triglyceride-glucose (TyG) index, a marker of insulin resistance, which in turn is linked to heightened cardiovascular disease (CVD) risk. Thus, insulin resistance could potentially mediate the association between BMI and CVD risk. However, few studies have explored this mechanism in the general population.

View Article and Find Full Text PDF

The role of multimodality imaging in diabetic cardiomyopathy: a brief review.

Front Endocrinol (Lausanne)

January 2025

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.

Diabetic cardiomyopathy (DMCM), defined as left ventricular dysfunction in the setting of diabetes mellitus without hypertension, coronary artery disease or valvular heart disease, is a well-recognized entity whose prevalence is certainly predicted to increase alongside the rising incidence and prevalence of diabetes mellitus. The pathophysiology of DMCM stems from hyperglycemia and insulin resistance, resulting in oxidative stress, inflammation, cardiomyocyte death, and fibrosis. These perturbations lead to left ventricular hypertrophy with associated impaired relaxation early in the course of the disease, and eventually culminating in combined systolic and diastolic heart failure.

View Article and Find Full Text PDF

Background: Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!