Objective: We evaluated the susceptibility status of Anopheles gambiae in two communities of Ikorodu, Lagos, Nigeria to DDT, deltamethrin, lambda cyhalothrin and bendiocarb.

Methods: immature stages were collected from their habitats in the surveyed community and allowed to emerge before exposure adult females to discriminating doses of WHO insecticides including DDT, deltamethrin, lambda cyhalothrin, bendiocarb and malathion. PBO synergistic bioassay was conducted for insecticides where the mosquito samples showed resistance. PCR assay was used for the detection of kdr mutation in the mosquitoes.

Results: Resistance to DDT (40% and 86%) and lambda cyhalothrin (75% and 84%) in Oke-Ota and Majidun respectively. Suspected resistance to deltamethrin (94.9%) and bendiocarb (93.5%) was recorded in Oke-Ota community and the mosquitoes were susceptible to malathion in both communities. KDR mutation (L1014F) from resistance samples from both locations though with a low frequency that significantly departs from Hardy-Weinberg's probability (P> 0.01). PBO synergized bioassay was able to increase knockdown, percentage mortality and restore full susceptibility to deltamethrin and bendiocarb.

Conclusion: Results from this study indicates that the metabolic resistance mechanism is highly implicated in the resistance to different classes of insecticide in Ikorodu and this should be taken into consideration when implementing vector control activities in this area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398442PMC
http://dx.doi.org/10.4314/ahs.v23i1.27DOI Listing

Publication Analysis

Top Keywords

lambda cyhalothrin
12
low frequency
8
mutation l1014f
8
anopheles gambiae
8
ikorodu lagos
8
ddt deltamethrin
8
deltamethrin lambda
8
kdr mutation
8
resistance
7
frequency knockdown
4

Similar Publications

Caterpillars of the genus Spodoptera are the main pests in soybean and cotton crops and Spodoptera cosmioides causes more severe losses than other caterpillars in these agricultural crops. However, there are few recommended insecticides for controlling this pest. Lambda-cyhalothrin is a pyrethroid used to control a wide spectrum of arthropods including lepidopterans.

View Article and Find Full Text PDF

Biochemical targets of chick embryos affected by sub-lethal concentrations of lambda-cyhalothrin and imidacloprid.

Res Vet Sci

January 2025

Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticide Lab, Agricultural Research Center, Alexandria, Egypt.

The insecticides Lambda-cyhalothrin (LCT) and imidacloprid (IMD) are extensively utilized in Egyptian agriculture. Embryonic chicken is a readily accessible model organism commonly employed in various studies. Eggs of (Gallus Gallus) chicken were immersed in an aqueous solution of two sub-lethal concentrations (0.

View Article and Find Full Text PDF

Pesticides tend to cause serious reproductive defects, disturbing endocrine functions and reducing fertility, especially in females. The objective of this work was to identify the reprotoxic effects of Ampligo® 150 ZC (AP), a mixture formulation of lambda cyhalothrin and chlorantraniliprole, on the ovary of female rabbits (Oryctolagus cuniculus) and the possible protective effect of co-treatment with thyme essential oil (TEO), extracted from (Thymus vulgaris) species, and vitamin C (vit C). Twenty female rabbits were divided into four equal groups (n=5): Control (distilled water), AP (20mg/ kg bw of the insecticide mixture every other day, by gavage for 28 days), AP+TEO (20mg/ kg bw of AP + 0.

View Article and Find Full Text PDF

Role of mutation G255A in modulating pyrethroid sensitivity in insect sodium channels.

Int J Biol Macromol

January 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China; School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China. Electronic address:

A voltage-gated sodium channel (VGSC) plays a crucial role in insect electrical signals, and it is a target for various naturally occurring and synthesized neurotoxins, including pyrethroids and dichlorodiphenyltrichloroethane. The type of agent is typically widely used to prevent and control sanitary and agricultural pests. The perennial use of insecticides has caused mutations in VGSCs that have given rise to resistance in most insects.

View Article and Find Full Text PDF

Exploring novel pyrethroid resistance mechanisms through RNA-seq in from Colombia.

Curr Res Insect Sci

December 2024

Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín 050010, Colombia.

Article Synopsis
  • Pyrethroids are widely used insecticides, but resistance in Colombian triatomine populations is poorly understood.
  • This study investigates resistance mechanisms to pyrethroids through genetic mutations, metabolic activity changes, and RNA-seq analyses.
  • Results show resistance in field populations to certain insecticides, highlighting potential gene regulation linked to detoxification, important for developing management strategies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!