Zinc enhances the cell adhesion, migration, and self-renewal potential of human umbilical cord derived mesenchymal stem cells.

World J Stem Cells

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan.

Published: July 2023

Background: Zinc (Zn) is the second most abundant trace element after Fe, present in the human body. It is frequently reported in association with cell growth and proliferation, and its deficiency is considered to be a major disease contributing factor.

Aim: To determine the effect of Zn on growth and proliferation of human umbilical cord (hUC)-derived mesenchymal stem cells (MSCs).

Methods: hUC-MSCs were isolated from human umbilical cord tissue and characterized based on immunocytochemistry, immunophenotyping, and tri-lineage differentiation. The impact of Zn on cytotoxicity and proliferation was determined by MTT and Alamar blue assay. To determine the effect of Zn on population doubling time (PDT), hUC-MSCs were cultured in media with and without Zn for several passages. An i scratch assay was performed to analyze the effect of Zn on the wound healing and migration capability of hUC-MSCs. A cell adhesion assay was used to test the surface adhesiveness of hUC-MSCs. Transcriptional analysis of genes involved in the cell cycle, proliferation, migration, and self-renewal of hUC-MSCs was performed by quantitative real-time polymerase chain reaction. The protein expression of Lin28, a pluripotency marker, was analyzed by immunocytochemistry.

Results: Zn at lower concentrations enhanced the rate of proliferation but at higher concentrations (> 100 µM), showed concentration dependent cytotoxicity in hUC-MSCs. hUC-MSCs treated with Zn exhibited a significantly greater healing and migration rate compared to untreated cells. Zn also increased the cell adhesion rate, and colony forming efficiency (CFE). In addition, Zn upregulated the expression of genes involved in the cell cycle (), proliferation (), migration (), and self-renewal () of hUC-MSCs. Expression of Lin28 protein was significantly increased in cells treated with Zn.

Conclusion: Our findings suggest that zinc enhances the proliferation rate of hUC-MSCs decreasing the PDT, and maintaining the CFE. Zn also enhances the cell adhesion, migration, and self-renewal of hUC-MSCs. These results highlight the essential role of Zn in cell growth and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401417PMC
http://dx.doi.org/10.4252/wjsc.v15.i7.751DOI Listing

Publication Analysis

Top Keywords

cell adhesion
16
migration self-renewal
16
human umbilical
12
umbilical cord
12
self-renewal huc-mscs
12
huc-mscs
10
zinc enhances
8
cell
8
enhances cell
8
adhesion migration
8

Similar Publications

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

ALCAM is an entry factor for severe community acquired Pneumonia-associated Human adenovirus species B.

Nat Commun

December 2024

Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.

Human adenovirus (HAdV) is a widely spread respiratory pathogen that can cause infections in multiple tissues and organs. Previous studies have established an association between HAdV species B (HAdV-B) infection and severe community-acquired pneumonia (SCAP). However, the connection between SCAP-associated HAdV-B infection and host factor expression profile in patients has not been systematically investigated.

View Article and Find Full Text PDF

Lactobacillus crispatus S-layer proteins modulate innate immune response and inflammation in the lower female reproductive tract.

Nat Commun

December 2024

Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK.

Lactobacillus species dominance of the vaginal microbiome is a hallmark of vaginal health. Pathogen displacement of vaginal lactobacilli drives innate immune activation and mucosal barrier disruption, increasing the risks of STI acquisition and, in pregnancy, of preterm birth. We describe differential TLR mediated activation of the proinflammatory transcription factor NF-κB by vaginal pathogens and commensals.

View Article and Find Full Text PDF

Introduction: The transcriptomic characteristics of + non-small cell lung cancer (NSCLC) represent a crucial aspect of its tumor biology. These features provide valuable insights into key dysregulated pathways, potentially leading to the discovery of novel targetable alterations or biomarkers.

Methods: From The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, all available + (n = 10), + (n = 5) and + (n = 5) NSCLC tumor and + cell line (n = 7) RNA-sequencing files were collected.

View Article and Find Full Text PDF

Background And Objectives: The most common cause of severe foodborne salmonellosis is Typhimurium. Its interaction with intestinal epithelial cells is little known. Lactic acid bacteria (LAB) were recognized as a prominent probiotic gastrointestinal microbiota of humans and animals that confer health-promoting and protective effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!