Colorectal cancer (CRC) is one of the leading global malignancies with low 5-year survival and high mortality rates. Despite extensive research, the precise role of gut metabolites in CRC development and clinical outcomes remains unclear, while its elucidation may aid the development of improved clinical diagnosis and treatment options. In the present study, targeted metabolomic analysis was conducted on fecal samples from 35 patients with CRC, 37 patients with colorectal adenoma and 30 healthy controls (HC) to identify metabolite biomarkers. Using orthogonal partial least squares discriminant analysis, metabolomic features distinguishing the three groups were identified. Receiver operating characteristic (ROC) curve analysis was used to assess diagnostic utility for distinguishing CRC from HC. The association of gut metabolites with survival in patients with CRC was also analyzed by comparing short-term survivors (STS) and long-term survivors (LTS), and the prognostic ability of metabolites was predicted using Cox regression and Kaplan-Meier analysis. The results of the current study showed that the enriched pathways in CRC included 'caffeine metabolism', 'thiamine metabolism', 'phenylalanine, tyrosine and tryptophan biosynthesis' and 'phenylalanine metabolism'. ROC analysis found that 9,10-dihydroxy-12-octadecenoic acid, cholesterol ester (18:2) and lipoxinA4 distinguished CRC from HC. Joint quantification of these three metabolites resulted in an area under the ROC curve of 0.969 in the diagnosis of CRC. The analysis of the current study also showed that the expression of metabolites involved in 'sphingolipid metabolism' was mainly dysregulated in LTS and STS, while N-acetylmannosamine and 2,5-dihydroxybenzaldehyde were associated with better overall survival. In conclusion, the present study provided preliminary insight into the metabolic changes associated with CRC and may have important implications for the development of future diagnostic and treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398631 | PMC |
http://dx.doi.org/10.3892/ol.2023.13944 | DOI Listing |
Clin Rheumatol
January 2025
Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
January 2025
Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.
Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Hangzhou, 310058, Zhejiang, China.
The widespread use of antibiotics has led to the emergence of multidrug-resistant bacteria, which pose significant threats to animal health and food safety. Host defense peptides (HDPs) have emerged as promising alternatives because of their unique antimicrobial properties and minimal resistance induction. However, the high costs associated with HDP production and incorporation into animal management practices hinder their widespread application.
View Article and Find Full Text PDFALTEX
January 2025
Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium.
The gut microbiota is unanimously acknowledged as playing a central role in human health, notably through the production of various metabolites, including short-chain fatty acids, secondary bile acids, vitamins or neurotransmitters. Beyond contributing to gut health itself, these microbial metabolites significantly impact multiple organ systems by participating in key signaling pathways along the well documented gut-organ axes. Chemicals ingested through food might interact with our gut microbiota, altering metabolites production with consequences on health.
View Article and Find Full Text PDFSci China Life Sci
January 2025
State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
The gut microbiota plays key roles in host health by shaping the host immune responses through their metabolites, like indole derivatives from tryptophan. However, the direct role of these indole derivatives in macrophage fate decision and the underlying mechanism remains unknown. Here, we found that bacterial indole-3-propionic acid (IPA) downregulates interleukin-1beta (IL-1β) production in M1 macrophages through inhibition of nuclear factor-kappa B (NF-κB) signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!