Biodiesel is a less hazardous, environmentally friendly biofuel that has been extensively investigated in modern years to ensure that we lessen our dependency on fossil fuels and mitigate climate change. While fossil fuel substitutes like biodiesel may help transition to a less polluted world, industrial-scale manufacturing still relies highly on chemical catalysis. However, heterogeneous solid catalysts result in less activity for biodiesel production due to their deactivation effects, porosity, surface area, material stability, and lower reactivity under moderate conditions. The "sulfonated carbons" are metal-free solid protonic acids distinguished by their distinctive carbon structure and Brønsted acidity ( = 8-11). Heterogeneous sulfonated catalysts derived from waste biomass were a significant focus of the most advanced biodiesel processing techniques for simple and low-cost manufacturing processes. This study discusses the advantages and disadvantages of various catalysts, biomass sources and properties, synthesis of catalysts, and factors influencing the insertion of active sulfonic sites on biomass surfaces. Additionally, transesterification and esterification reaction mechanisms and kinetics are discussed. At last, future directions are provided for young, dynamic researchers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398831 | PMC |
http://dx.doi.org/10.1039/d3ra03561a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!