Rehabilitation approaches for individuals with neurologic conditions have increasingly shifted toward promoting neuroplasticity for enhanced recovery and restoration of function. This review focuses on exercise strategies and non-invasive neuromodulation techniques that target neuroplasticity, including transcranial magnetic stimulation (TMS), vagus nerve stimulation (VNS), and peripheral nerve stimulation (PNS). We have chosen to focus on non-invasive neuromodulation techniques due to their greater potential for integration into routine clinical practice. We explore and discuss the application of these interventional strategies in four neurological conditions that are frequently encountered in rehabilitation settings: Parkinson's Disease (PD), Traumatic Brain Injury (TBI), stroke, and Spinal Cord Injury (SCI). Additionally, we discuss the potential benefits of combining non-invasive neuromodulation with rehabilitation, which has shown promise in accelerating recovery. Our review identifies studies that demonstrate enhanced recovery through combined exercise and non-invasive neuromodulation in the selected patient populations. We primarily focus on the motor aspects of rehabilitation, but also briefly address non-motor impacts of these conditions. Additionally, we identify the gaps in current literature and barriers to implementation of combined approaches into clinical practice. We highlight areas needing further research and suggest avenues for future investigation, aiming to enhance the personalization of the unique neuroplastic responses associated with each condition. This review serves as a resource for rehabilitation professionals and researchers seeking a comprehensive understanding of neuroplastic exercise interventions and non-invasive neuromodulation techniques tailored for specific diseases and diagnoses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400781 | PMC |
http://dx.doi.org/10.3389/fnhum.2023.1151218 | DOI Listing |
Neuroinformatics
January 2025
Shanghai Berry Electronic Technology Co., Ltd., Shanghai, 200000, China.
In recent years, the modulation of brain neural activity by applied electromagnetic fields has become a hot spot in neuroscience research. Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are two common non-invasive neuromodulation techniques. However, conventional tACS has limited stimulation effects in the deeper parts of the brain.
View Article and Find Full Text PDFCurr Pain Headache Rep
January 2025
Department of Neurology - Headache Division, University of Miami Health, University of Miami School of Medicine, 1120 NW 14th Street, 13th Floor, Miami, FL, 33136, USA.
Purpose Of Review: Management of primary headache disorders during pregnancy is limited due to known teratogenicity or unknown safety of many currently available pharmaceutical therapies. Here, we explore the safety and efficacy of non-invasive neuromodulatory devices as another treatment modality for pregnant patients.
Recent Findings: There are six FDA-cleared, non-invasive neuromodulatory devices currently available for the management of headache that include remote electrical neuromodulation (REN), noninvasive vagal nerve stimulation (nVNS), external trigeminal nerve stimulation (eTNS), single-pulse transcranial magnetic stimulation (sTMS), and external concurrent occipital and trigeminal neurostimulation (eCOT-NS).
Front Neurosci
December 2024
The Institute for Artificial Intelligence R&D, Novi Sad, Serbia.
Background: In this study we investigate the selective compensation of paired peripheral nerves in healthy humans, focusing on distinct axonal conduction velocities in different fibre types. Using paired associative stimulation (PAS) with adjustable parameters, we aimed to modulate and compensate for neuronal activity along the median nerve.
Methods: Six healthy volunteers (3 male, 3 female, aged: 22-49) participated in the current study.
Medicina (Kaunas)
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
Stroke remains a leading cause of global disability and mortality despite advancements in acute interventions. Transcranial direct current stimulation (tDCS), a non-invasive neuromodulation technique, has primarily been studied for its effects on cortical excitability, with limited exploration of its neuroprotective and hemodynamic benefits. This review examines the role of tDCS in stroke, with a focus on neuroprotection in acute settings and cerebral blood flow (CBF) modulation in both acute and chronic phases.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Non-Invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei 114, Taiwan.
Cognitive deficits are emerging as critical targets for managing schizophrenia and enhancing clinical and functional outcomes. These deficits are pervasive among individuals with schizophrenia, affecting various cognitive domains. Traditional pharmacotherapy and cognitive behavioral therapy (CBT) have limitations in effectively addressing cognitive impairments in this population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!