AI Article Synopsis

  • Macrophages are versatile immune cells that adapt their functions based on their environment, playing a crucial role in managing disease progression and tissue balance.
  • Different macrophage subtypes have specific roles, and dysfunction or imbalance among these types, especially between M1 and M2, can lead to diseases, particularly in skeletal muscle.
  • The review emphasizes the importance of understanding macrophage interactions and suggests strategies to target them for reducing damage and fibrosis in muscular disorders, aiming to improve tissue health.

Article Abstract

Macrophages are a heterogeneous cell type with high plasticity, exhibiting unique activation characteristics that modulate the progression and resolution of diseases, serving as a key mediator in maintaining tissue homeostasis. Macrophages display a variety of activation states in response to stimuli in the local environment, with their subpopulations and biological functions being dependent on the local microenvironment. Resident tissue macrophages exhibit distinct transcriptional profiles and functions, all of which are essential for maintaining internal homeostasis. Dysfunctional macrophage subpopulations, or an imbalance in the M1/M2 subpopulation ratio, contribute to the pathogenesis of diseases. In skeletal muscle disorders, immune and inflammatory damage, as well as fibrosis induced by macrophages, are prominent pathological features. Therefore, targeting macrophages is of great significance for maintaining tissue homeostasis and treating skeletal muscle disorders. In this review, we discuss the receptor-ligand interactions regulating macrophages and identify potential targets for inhibiting collateral damage and fibrosis in skeletal muscle disorders. Furthermore, we explore strategies for modulating macrophages to maintain tissue homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400722PMC
http://dx.doi.org/10.3389/fimmu.2023.1219487DOI Listing

Publication Analysis

Top Keywords

tissue homeostasis
12
skeletal muscle
12
muscle disorders
12
macrophages
8
maintaining tissue
8
potential therapeutic
4
therapeutic targets
4
targets macrophages
4
macrophages inhibiting
4
inhibiting immune
4

Similar Publications

Nesfatin-1 is a crucial regulator of energy homeostasis in mammals and fishes, however, its metabolic role remains completely unexplored in amphibians, reptiles, and birds. Therefore, present study elucidates role of nesfatin-1 in glucose homeostasis in wall lizard wherein fasting stimulated hepatic nucb2/nesfatin-1, glycogen phosphorylase (glyp), phosphoenolpyruvate carboxykinase (pepck), and fructose 1,6-bisphosphatase (fbp), while feeding upregulated pancreatic nucb2/nesfatin-1 and insulin, suggesting towards tissue-specific dual role of nesfatin-1 in glucoregulation. The glycogenolytic/gluconeogenic role of nesfatin-1 was further confirmed by an increase in media glucose levels along with heightened hepatic pepck and fbp expression and concomitant decline in liver glycogen content in nesfatin-1-treated liver of wall lizard.

View Article and Find Full Text PDF

Mammalian SLC39A13 promotes ER/Golgi iron transport and iron homeostasis in multiple compartments.

Nat Commun

December 2024

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.

View Article and Find Full Text PDF

Objective: Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear.

Methods: Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro.

View Article and Find Full Text PDF

Downregulation of semaphorin 4A in keratinocytes reflects the features of non-lesional psoriasis.

Elife

December 2024

Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.

Psoriasis is a multifactorial disorder mediated by IL-17-producing T cells, involving immune cells and skin-constituting cells. Semaphorin 4A (Sema4A), an immune semaphorin, is known to take part in T helper type 1/17 differentiation and activation. However, Sema4A is also crucial for maintaining peripheral tissue homeostasis and its involvement in skin remains unknown.

View Article and Find Full Text PDF

Epithelial Polarity Loss and Multilayer Formation: Insights Into Tumor Growth and Regulatory Mechanisms.

Bioessays

December 2024

Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA.

Epithelial tissues serve as critical barriers in metazoan organisms, maintaining structural integrity and facilitating essential physiological functions. Epithelial cell polarity regulates mechanical properties, signaling, and transport, ensuring tissue organization and homeostasis. However, the barrier function is challenged by cell turnover during development and maintenance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!