A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Global analysis of iron metabolism-related genes identifies potential mechanisms of gliomagenesis and reveals novel targets. | LitMetric

Aims: This study aimed to investigate key regulators of aberrant iron metabolism in gliomas, and evaluate their effect on biological functions and clinical translational relevance.

Methods: We used transcriptomic data from multiple cross-platform glioma cohorts to identify key iron metabolism-related genes (IMRGs) based on a series of bioinformatic and machine learning methods. The associations between IMRGs and prognosis, mesenchymal phenotype, and genomic alterations were analyzed in silico. The performance of the IMRGs-based signature in predicting temozolomide (TMZ) treatment sensitivity was evaluated. In vitro and in vivo experiments were used to explore the biological functions of these key IMRGs.

Results: HMOX1, LTF, and STEAP3 were identified as the most essential IMRGs in gliomas. The expression levels of these genes were strongly related to clinicopathological and molecular features. The robust IMRG-based gene signature could be used for prognosis prediction. These genes facilitate mesenchymal transformation, driver gene mutations, and oncogenic alterations in gliomas. The gene signature was also associated with TMZ resistance. HMOX1, LTF, and STEAP3 knockdown in glioma cells significantly reduced cell proliferation, colony formation, migration, and malignant invasion.

Conclusion: The study presented a comprehensive view of key regulators underpinning iron metabolism in gliomas and provided new insights into novel therapeutic approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848104PMC
http://dx.doi.org/10.1111/cns.14386DOI Listing

Publication Analysis

Top Keywords

iron metabolism-related
8
metabolism-related genes
8
key regulators
8
iron metabolism
8
metabolism gliomas
8
biological functions
8
hmox1 ltf
8
ltf steap3
8
gene signature
8
global analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!