Crude oil exploitation in the Niger Delta, particularly in Ogoniland, brought environmental devastation occasioned by petroleum pollution, as farmlands and water sources were destroyed. This study was designed to remediate crude oil contaminated water obtained from water sources in Ogoniland using two green algal species. Thirty water samples were collected from eight different water sources. The samples were analysed for total petroleum hydrocarbon (TPH) using gas chromatography/flame ionization detector (GC/FID). Algal samples were collected from Ogba River and at wetland in Military Hospital Benin, Edo State, Nigeria. The algal samples were identified, screened, optimized and grown in Bold basal medium. Results obtained from the determination of TPH showed that the infiltrated pond (Exc) sample site had the highest concentration among all the sites sampled with 198.8329 μg/L, R with 134.1296 μg/L, R with 108.9394 μg/L, R with 105.8011 μg/L, R with 98.442 8 μg/L, the hand-dug wells (Wll) had 9.6586 μg/L while the borehole (Bhl) had the lowest with 1.8310 μg/L. It was deduced that pollution of water sources was principally because of pollutants washed from the soil environment into the open surface water sources via run-off rather than through the seepage from the underground aquifers, incriminating illegal oil mining and artisanal refining. Results obtained from the analysis of algal growth medium indicated that the two algal species were able to absorb the hydrocarbon contaminants, albeit at different rates, corresponding with the algal growth rate. Analysis of algal biomass after 4 weeks of remediation showed that from the initial 10.27 μg/20 mL added to the growth medium, the highest TPH mean value of 0.490 μg/20 mL was extracted from Ulothrix zonata (F.Weber & Mohr) Kützing biomass grown in Exc compared to 0.344 μg/20 mL of TPH extracted from Chlorella sorokiniana Shihira & R.W.Krauss grown in the same sample site. Also, Ulothrix zonata had higher TPH yield 0.023 μg/20 mL in Bhl compared to Chlorella sorokiniana 0.021 μg/20 mL of TPH from the same water source. This result indicated Ulothrix zonata had superior TPH phycoremediation ability to Chlorella sorokiniana. While the present study calls for deployment of the algal species for field trial, it is strongly recommended that crude oil pollution should be discouraged.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-29004-8 | DOI Listing |
PeerJ
January 2025
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.
The average annual water availability worldwide is approximately 1,386 trillion cubic hectometers (hm), of which 97.5% is saltwater and only 2.5% is freshwater.
View Article and Find Full Text PDFNew Phytol
January 2025
Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
Recent studies have shown that stem fluxes, although highly variable among trees, can alter the strength of the methane (CH) sink or nitrous oxide (NO) source in some forests, but the patterns and magnitudes of these fluxes remain unclear. This study investigated the drivers of subdaily and seasonal variations in stem and soil CH, NO and carbon dioxide (CO) fluxes. CH, NO and CO fluxes were measured continuously for 19 months in individual stems of two tree species, Eperua falcata (Aubl.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
January 2025
Wildlife Observatory of Australia (WildObs), Queensland Cyber Infrastructure Foundation (QCIF), Brisbane, Queensland, 4072, Australia.
Camera traps are widely used in wildlife research and monitoring, so it is imperative to understand their strengths, limitations, and potential for increasing impact. We investigated a decade of use of wildlife cameras (2012-2022) with a case study on Australian terrestrial vertebrates using a multifaceted approach. We (i) synthesised information from a literature review; (ii) conducted an online questionnaire of 132 professionals; (iii) hosted an in-person workshop of 28 leading experts representing academia, non-governmental organisations (NGOs), and government; and (iv) mapped camera trap usage based on all sources.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Departamento de Ciência E Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil.
Technological advances have led to a proportional increase in the deposition of contaminants across various environmental compartments, including water sources. Heavy metals, also known as potentially toxic metals, are of particular concern due to their significant harmful impacts on environmental and human health. Among the available methods for mitigating the threat of these metals in water, solar radiation-based technologies stand out for their cleanliness, cost-effectiveness, and efficiency in removing or reducing the toxicity of heavy metals.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India.
This study provides a detailed approach to evaluating water quality in the Haridwar district, Uttarakhand, India, by integrating physicochemical and microbiological investigations. It employs multivariate analysis and applies water quality and trophic state indices to evaluate the current state of the water and identify potential sources of contamination. The results from the correlation matrix highlight the dynamic interactions between different water quality parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!