Antimony (Sb) is a toxic substance that poses a serious ecological threat when released into the environment. The species and redox state of Sb determine its environmental toxicity and fate. Understanding the redox transformations and biogeochemical cycling of Sb is crucial for analyzing and predicting its environmental behavior. Dissolved organic matter (DOM) in the environment greatly affects the fate of Sb. Microbially produced DOM is a vital component of environmental DOM; however, its specific role in Sb(III) oxidation has not been experimentally confirmed. In this work, the oxidation capacity of several Shewanella strains and their derived DOM to Sb(III) was confirmed. The oxidation rate of Sb(III) shows a positive correlation with DOM concentration, with higher rates observed under neutral and weak alkaline conditions, regardless of the presence of light. Incubation experiments indicated that extracellular enzymes and common reactive oxygen species were not involved in the oxidation of Sb(III). Characteristics of DOM suggests that microbial humic acid-like and fulvic acid-like substances are the potential contributors to Sb(III) oxidation. These findings not only experimentally validate the role of bacterial-derived DOM in Sb(III) oxidation but also reveal the significance of Shewanella and biogenic DOM in the biogeochemical cycling of Sb.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.116834 | DOI Listing |
Environ Sci Technol
January 2025
Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Microbes have been shown to adapt to stressful or even lethal conditions through displaying genome plasticity. However, how bacteria utilize the ability of genomic plasticity to deal with high antimony (Sb) stress has remained unclear. In this study, the spontaneous mutant strain SMAs-55 of sp.
View Article and Find Full Text PDFEnviron Technol
December 2024
College of Resources and Environmental Engineering, Guizhou University, Guiyang, People's Republic of China.
Increasing antimony (Sb) pollution has become a global concern, but there is still a lack of economically efficient adsorbents for its remediation. In this study, a novel remediation material was developed by precipitating TiO onto waste herb-residue biochar (named TBC). The effectiveness and adsorption mechanisms of the material for Sb(III) removal were investigated through adsorption experiments, and the enhancement pathway of traditional herb decoction on the effectiveness of modified biochar was analyzed.
View Article and Find Full Text PDFEnviron Res
February 2025
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
Antimony (Sb) is a toxic heavy metal that endangers both the environment and human health. In response to the growing need for efficient Sb removal from printing and dyeing wastewater (PDW), this study introduces a novel titanium-manganese binary oxide adsorbent (T2M1BO) synthesized via precipitation. Experimental results show that T2M1BO exhibited higher absorption efficiency for Sb(III) compared to Sb(V), with maximum adsorption capacities recorded at 323.
View Article and Find Full Text PDFParasit Vectors
November 2024
Grupo de Genômica funcional de Parasitos (GFP), Instituto René Rachou IRR, Fundação Oswaldo Cruz - FIOCRUZ/Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil.
Background: Ascorbate peroxidase (APX) has emerged as a promising target for chemotherapy because of its absence in humans and crucial role in the antioxidant defence of trypanosomatids. APXs, which are class I haeme-containing enzymes, reduces hydrogen peroxide using ascorbate to produce water and monodehydroascorbate, thereby preventing cell damage caused by HO.
Methods: We aimed to create an APX-knockout L.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!