The cyanobacteriochrome Slr1393 can be photoconverted between a red (Pr) and green absorbing form (Pg). The recently determined crystal structures of both states suggest a major movement of Trp496 from a stacking interaction with ring D of the phycocyanobilin (PCB) chromophore in Pr to a position outside the chromophore pocket in Pg. Here, we investigated the role of this amino acid during photoconversion in solution using engineered protein variants in which Trp496 was substituted by natural and non-natural amino acids. These variants and the native protein were studied by various spectroscopic techniques (UV-vis absorption, fluorescence, IR, NIR and UV resonance Raman) complemented by theoretical approaches. Trp496 is shown to affect the electronic transition of PCB and to be essential for the thermal equilibrium between Pr and an intermediate state O. However, Trp496 is not required to stabilize the tilted orientation of ring D in Pr, and does not play a role in the secondary structure changes of Slr1393 during the Pr/Pg transition. The present results confirm the re-orientation of Trp496 upon Pr → Pg conversion, but do not provide evidence of a major change in the microenvironment of this residue. Structural models indicate the penetration of water molecules into the chromophore pocket in both Pr and Pg states and thus water-Trp contacts, which can readily account for the subtle spectral changes between Pr and Pg. Thus, we conclude that reorientation of Trp496 during the Pr-to-Pg photoconversion in solution is not associated with a major change in the dielectric environment in the two states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2023.168227 | DOI Listing |
Nat Commun
October 2024
Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
A sustainable operation for harvesting metals in the lanthanide series is needed to meet the rising demand for rare earth elements across diverse global industries. However, existing methods are limited in their capacity for detection and capture at environmentally and industrially relevant lanthanide concentrations. Supercharged fluorescent proteins have solvent-exposed, negatively charged residues that potentially create multiple direct chelation pockets for free lanthanide cations.
View Article and Find Full Text PDFbioRxiv
September 2024
Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America.
Visual pigments are essential for converting light into electrical signals during vision. Composed of an opsin protein and a retinal-based chromophore, pigments in vertebrate rods (Rh1) and cones (Rh2) have different spectral sensitivities, with distinct peak absorption wavelengths determined by the shape and composition of the chromophore binding pocket. Despite advances in understanding Rh1 pigments such as bovine rhodopsin, the molecular basis of spectral shifts in Rh2 cone opsins has been less studied, particularly the E122Q mutation, which accounts for about half of the observed spectral shift in these pigments.
View Article and Find Full Text PDFPlant Cell Physiol
September 2024
Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397 Japan.
Phycourobilin:ferredoxin oxidoreductase (PubS) belongs to the ferredoxin-dependent bilin reductase (FDBR) family and catalyzes the reduction of the C15=C16 double bond, followed by the C4=C5 double bond of biliverdin IXα to produce phycourobilin. Among the diverse FDBR enzymes that catalyze site-specific reduction reactions of bilins, PubS lineage is the only one that reduces the C4=C5 double bond. This family can be broadly divided into four-electron reduction enzymes, which catalyze two successive two-electron reductions, such as PubS, and two-electron reduction enzymes, which catalyze a single two-electron reduction.
View Article and Find Full Text PDFJ Phys Chem B
September 2024
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
Channelrhodopsins are light-gated ion channels with a retinal chromophore found in microbes and are widely used in optogenetics, a field of neuroscience that utilizes light to regulate neuronal activity. ACR1, an anion conducting channelrhodopsin derived from , has attracted attention for its application as a neuronal silencer in optogenetics because of its high conductivity and selectivity. However, atomistic mechanisms of channel photoactivation and ion conduction have not yet been elucidated.
View Article and Find Full Text PDFNat Commun
August 2024
Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
Channelrhodopsins are popular optogenetic tools in neuroscience, but remain poorly understood mechanistically. Here we report the cryo-EM structures of channelrhodopsin-2 (ChR2) from Chlamydomonas reinhardtii and H. catenoides kalium channelrhodopsin (KCR1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!