The stingless bees Tetragonisca angustula and Tetragonisca fiebrigi are widely distributed in Brazil, and both are commonly known as "jataí." Our goal was to investigate the possible origin of the B chromosomes in T. fiebrigi, a cytotaxonomic trait that differentiates T. fiebrigi from T. angustula. We analyzed diploid chromosome number (2n), B chromosome incidence, patterns of constitutive heterochromatin, and in situ localization of different repetitive DNA probes in T. angustula and T. fiebrigi. Both species displayed 2n = 34, with similar karyotype structures. One to three B chromosomes were observed in T. fiebrigi only. Constitutive heterochromatin was distributed on one arm of all chromosomes in both species, and T. fiebrigi B chromosomes were mainly heterochromatic with one euchromatic extremity. The (GA)15 and (CAA)10 microsatellite probes marked the euchromatic arms of all chromosomes in both species without marking the B chromosomes. The 18S ribosomal DNA (rDNA) probe marked 10 chromosomes in T. angustula and 6 A chromosomes in T. fiebrigi with an additional marking on 1B in individuals with 3B. The Tan-Bsp68I repetitive DNA probe marked the heterochromatic portion of all T. fiebrigi A and B chromosomes. This probe also marked the heterochromatic portion of all T. angustula chromosomes; therefore, both alternative hypotheses to the B chromosome origin are possible: (i) from the A chromosome complement of T. fiebrigi (intraspecific origin); or (ii) a by-product of genome reshuffling following the hybridization between T. fiebrigi and T. angustula (interspecific origin).

Download full-text PDF

Source
http://dx.doi.org/10.1159/000533431DOI Listing

Publication Analysis

Top Keywords

fiebrigi
12
probe marked
12
chromosomes
10
tetragonisca fiebrigi
8
tetragonisca angustula
8
chromosomes fiebrigi
8
fiebrigi angustula
8
constitutive heterochromatin
8
repetitive dna
8
chromosomes species
8

Similar Publications

Microbiological Diversity and Associated Enzymatic Activities in Honey and Pollen from Stingless Bees from Northern Argentina.

Microorganisms

March 2024

Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, San Miguel de Tucumán T4001, Argentina.

Honey and pollen from and , stingless bees from northern Argentina, presented a particular microbiological profile and associated enzymatic activities. The cultured bacteria were mostly spp. (44%) and spp.

View Article and Find Full Text PDF

Identification of chemosensory genes in the stingless bee Tetragonisca fiebrigi.

G3 (Bethesda)

May 2024

Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires-CONICET, CABA C1428EGA, Argentina.

Reception of chemical information from the environment is crucial for insects' survival and reproduction. The chemosensory reception mainly occurs by the antennae and mouth parts of the insect, when the stimulus contacts the chemoreceptors located within the sensilla. Chemosensory receptor genes have been well-studied in some social hymenopterans such as ants, honeybees, and wasps.

View Article and Find Full Text PDF

Bacterial Strains Isolated from Stingless Bee Workers Inhibit the Growth of Apis mellifera Pathogens.

Curr Microbiol

February 2024

Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Biotecnología "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Universidad Nacional de Misiones, Misiones, Argentina.

Apis mellifera bees are an important resource for the local economy of various regions in Argentina and the maintenance of natural ecosystems. In recent years, different alternatives have been investigated to avoid the reduction or loss of colonies caused by pathogens and parasites such as Ascosphaera apis, Aspergillus flavus, and Paenibacillus larvae. We focused on bacterial strains isolated from the intestine of native stingless bees, to elucidate their antagonistic effect on diseases of A.

View Article and Find Full Text PDF

Fungal microbiota isolated from native stingless bee species inhibited pathogens of Apis mellifera.

Fungal Biol

September 2023

Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Biotecnología "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Misiones, Argentina; CONICET, Buenos Aires, Argentina.

Social bees can establish interactions with microorganisms to keep their colonies free of pathogens and parasites by developing different protection strategies. We explored the fungal microbiota isolated from three species of stingless bees, Tetragonisca fiebrigi, Plebeias sp., and Scaptotrigona jujuyensis, and its potential ability to suppress pathogenic microorganisms of A.

View Article and Find Full Text PDF

The stingless bees Tetragonisca angustula and Tetragonisca fiebrigi are widely distributed in Brazil, and both are commonly known as "jataí." Our goal was to investigate the possible origin of the B chromosomes in T. fiebrigi, a cytotaxonomic trait that differentiates T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!