The air-broadened lines from the oxygen B band were measured for the first time in controlled laboratory conditions with a high signal-to-noise ratio using frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) referenced to the optical frequency comb. Spectra measured at various pressures and temperatures were analyzed with an advanced line-shape model, considering the speed-dependence of collisional broadening and shift, and the effect of velocity-changing collisions. The temperature dependence of collisional broadening and shift is determined, whereas no significant temperature dependence of speed-dependent parameters and Dicke narrowing was observed. In addition, we have demonstrated that reasonable estimation of temperature dependence for pressure broadening is possible even from measurements done in single temperature where the speed dependence of pressure broadening was determined. New spectroscopic data improve the accuracy of the air-broadened oxygen B-band spectra description by an order of magnitude.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.123185 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!