A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiple roles of wheat ferritin genes during stress treatment and TaFER5D-1 as a positive regulator in response to drought and salt tolerance. | LitMetric

Multiple roles of wheat ferritin genes during stress treatment and TaFER5D-1 as a positive regulator in response to drought and salt tolerance.

Plant Physiol Biochem

Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China. Electronic address:

Published: September 2023

AI Article Synopsis

  • Ferritin is crucial for regulating iron levels, plant development, and resistance to oxidative stress, but its role in wheat needs further exploration.
  • A study identified 39 FER family members in wheat, revealing two subgroups with conserved protein models and suggesting TaFERs are important for coping with environmental stresses.
  • The TaFER5D-1 gene showed significant expression under drought and salt conditions, localized in various cell compartments, and when over-expressed in transgenic Arabidopsis, it enhanced stress tolerance by promoting root growth, iron storage, and stress responses.

Article Abstract

Ferritin not only regulates the plant's iron content but also plays a significant role in the plant's development and resistance to oxidative damage. However, the role of the FER family in wheat has not been systematically elucidated. In this study, 39 FERs identified from wheat and its ancestral species were clustered into two subgroups, and gene members from the same group contain relatively conservative protein models. The structural analyses indicated that the gene members from the same group contained relatively conserved protein models. The cis-acting elements and expression patterns analysis suggested that TaFERs might play an important role combating to abiotic and biotic stresses. In the transcriptional analysis, the TaFER5D-1 gene was found to be significantly up-regulated under drought and salt stresses and was, therefore, selected to further explore the biological functions Moreover, the GFP expression assay revealed the subcellular localization of TaFER5D-1 proteins in the chloroplast, nucleus, membrane and cytoplasm. Over-expression of TaFER5D-1 in transgenic Arabidopsis lines conferred greater tolerance to drought and salt stress. According to the qRT-PCR data, TaFER5D-1 gene over-expression increased the expression of genes related to root development (Atsweet-17 and AtRSL4), iron storage (AtVIT1 and AtYSL1), and stress response (AtGolS1 and AtCOR47). So it is speculated that TaFER5D-1 could improve stress tolerance by promoting root growth, iron storage, and stress-response ability. Thus, the current study provides insight into the role of TaFER genes in wheat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2023.107921DOI Listing

Publication Analysis

Top Keywords

drought salt
12
gene members
8
members group
8
protein models
8
tafer5d-1 gene
8
iron storage
8
tafer5d-1
6
multiple roles
4
wheat
4
roles wheat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!