Exosomes as a modulator of immune resistance in human cancers.

Cytokine Growth Factor Rev

School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China. Electronic address:

Published: October 2023

AI Article Synopsis

  • Exosomes are tiny bubbles that help tumor cells talk to immune cells in the tumor area, affecting how the immune system works.
  • They can show immune cells what the tumor looks like, but they can also make it harder for the immune system to fight the tumor.
  • Researchers are studying exosomes to see if they can be used to help improve cancer treatments by finding new ways to use them as tools or markers in medicine.

Article Abstract

In the tumor microenvironment (TME), exosomes secreted by cells form interactive networks between the tumor cells and immune cells, thereby regulating immune signaling cascades in the TME. As key messengers of cell-to-cell communication in the TME, exosomes not only take charge of tumor cell antigen presentation to the immune cells, but also regulate the activities of immune cells, inhibit immune function, and, especially, promote immune resistance, all of which affects the therapeutic outcomes of tumors. Exosomes, which are small-sized vesicles, possess some remarkable advantages, including strong biological activity, a lack of immunogenicity and toxicity, and a strong targeting ability. Based on these characteristics, research on exosomes as biomarkers or carriers of tumor therapeutic drugs has become a research hotspot in related fields. This review describes the role of exosomes in cell communications in the TME, summarizes the effectiveness of exosome-based immunotherapy in overcoming immune resistance in cancer treatment, and systematically summarizes and discusses the characteristics of exosomes from different cell sources. Furthermore, the prospects and challenges of exosome-related therapies are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cytogfr.2023.07.007DOI Listing

Publication Analysis

Top Keywords

immune resistance
12
immune cells
12
immune
8
tme exosomes
8
characteristics exosomes
8
exosomes cell
8
exosomes
7
cells
5
exosomes modulator
4
modulator immune
4

Similar Publications

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.

View Article and Find Full Text PDF

The genus Nocardia as a source of new antimicrobials.

NPJ Antimicrob Resist

January 2025

Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.

The genus Nocardia comprises over 130 species of soil-dwelling actinomycetes, many of which are opportunistic pathogens. Beyond their pathogenicity, Nocardia exhibits significant biosynthetic potential, producing an array of diverse antimicrobial secondary metabolites. This review highlights notable examples of these compounds and explores modern approaches to unlocking their untapped biosynthetic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!