Climate change causes heavy rainfall incidents and sea level rise, which have serious impact on the availability and quality of water resources. These extreme phenomena lead to the rise of external and internal precursors in water reservoirs, and consequently affect the formation of disinfection by-products (DBPs). The aim of this study was to investigate the formation of nitrogenous_DBPs (N-DBPs) under extreme conditions caused by climate change. For this reason, two scenarios were adapted: a) sea level rise leading to increase of water salinity and b) heavy rainfall incidents leading to flooding events. The target-compounds were haloacetonitriles (HANs), haloacetamides (HAcAms) and halonitromethane (TCNM). Chlorination and chloramination were employed as disinfection processes under different doses (5 and 10 mg/L) and contact times (24 and 72 h). The results showed enhancement on the formation of N-DBPs and changes in their profile. Sea level rise scenario led to elevated concentrations of brominated species (maximum concentration of dibromoacetonitrile 23 μg/L and maximum concentration of bromoacetamide 57 μg/L), while flooding events scenario led to extended formation of chloroacetamide and bromochloroacetonitrile up to 58 μg/L and 40 μg/L, respectively. At the same time, changes in cytotoxicity and genotoxicity of the samples were observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!