In the field of agriculture, nanopesticides have been developed as an alternative to the conventional pesticides, being more efficient for pest control. However, before their widespread application it is essential to evaluate their safe application and no environmental impacts. In this paper, we evaluated the toxicological effects of two kinds of atrazine nanoformulations (ATZ NPs) in different biological models (Raphidocelis subcapitata, Danio rerio, Lemna minor, Artemia salina, Lactuca sativa and Daphnia magna) and compared the results with nanoparticle stability over time and the presence of natural organic matter (NOM). The systems showed different characteristics for Zein (ATZ NPZ) (184 ± 2 nm with a PDI of 0.28 ± 0.04 and zeta potential of (30.4 ± 0.05 mV) and poly(epsilon-caprolactone (ATZ PCL) (192 ± 3 nm, polydispersity (PDI) of 0.28 ± 0.28 and zeta potential of -18.8 ± 1.2 mV) nanoparticles. The results showed that there is a correlation between nanoparticles stability and the presence of NOM in the medium and Environmental Concentrations (EC) values. The stability loss or an increase in nanoparticle size result in low toxicity for R. subcapitata and L. minor. For D. magna and D. rerio, the presence of NOM in the medium reduces the ecotoxic effects for ATZ NPZ nanoparticles, but not for ATZ NPs, showing that the nanoparticles characteristics and their interaction with NOM can modulate toxic effects. Nanoparticle stability throughout the evaluation must be considered and become an integral part of toxicity protocol guidelines for nanopesticides, to ensure test quality and authentic results regarding nanopesticide effects in target and non-target organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.122235 | DOI Listing |
Sci Rep
December 2024
ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284 003, India.
Sugarcane is a major industrial crop highly susceptible to parasitic weed (Striga spp.), causing a 38% reduction in cane yield due to a longer lag phase of 20-40 days, and wider spacing. Herbicides with a longer retention and slow-release nature could allow Striga seeds to germinate and be killed before attaching to the host.
View Article and Find Full Text PDFEnviron Pollut
October 2023
Embrapa Environment, Rod SP 340, km 127.5, 13918-110, Jaguariúna, São Paulo State, Brazil. Electronic address:
In the field of agriculture, nanopesticides have been developed as an alternative to the conventional pesticides, being more efficient for pest control. However, before their widespread application it is essential to evaluate their safe application and no environmental impacts. In this paper, we evaluated the toxicological effects of two kinds of atrazine nanoformulations (ATZ NPs) in different biological models (Raphidocelis subcapitata, Danio rerio, Lemna minor, Artemia salina, Lactuca sativa and Daphnia magna) and compared the results with nanoparticle stability over time and the presence of natural organic matter (NOM).
View Article and Find Full Text PDFInt J Mol Sci
June 2023
National Research Council, Department of Chemical Sciences and Materials Technologies, Institute of Crystallography, Via Salaria Km 29.3, 00015 Rome, Italy.
Herein, a novel completely green biosensor was designed exploiting both the biological and instrumental components made of eco-friendly materials for the detection of herbicides encapsulated into biodegradable nanoparticles for a sustainable agriculture. Similar nanocarriers, indeed, can deliver herbicides to the correct location, reducing the amount of active chemicals deposited in the plant, impacting the agricultural and food industries less. However, handling measurements of nanoherbicides is crucial to provide comprehensive information about their status in the agricultural fields to support farmers in decision-making.
View Article and Find Full Text PDFJ Agric Food Chem
October 2021
Leiden University, Institute of Environmental Sciences (CML), P.O. Box 9518, 2300 RA Leiden, The Netherlands.
The rapid development of nanotechnology influences the developments within the agro-sector. An example is provided by the production of nanoenabled pesticides with the intention to optimize the efficiency of the pesticides. At the same time, it is important to collect information on the unintended and unwanted adverse effects of emerging nanopesticides on nontarget plants.
View Article and Find Full Text PDFJ Hazard Mater
September 2021
Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, SP, Brazil. Electronic address:
Nanoparticles loaded with atrazine show weed control efficacy even with lower application doses of the active ingredient. Changes in the mode of action of the herbicide through the nanoformulation are key to understanding the efficiency of post-emergence activity of nanoatrazine. Here, we report the leaf absorption and translocation of nanoatrazine and atrazine employing radiometric techniques and compare their herbicidal effects in greenhouse and field conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!