Bioelectricity production from the anodic inoculation of Geobacter sulfurreducens DL-1 bacteria in constructed wetlands-microbial fuel cells.

Bioelectrochemistry

Dirección de Ingeniería en Tecnología Ambiental y Biotecnología, Universidad Politécnica del Estado de Morelos, Paseo Cuauhnáhuac 566, Lomas del Texcal, Jiutepec, Morelos C.P. 62550, Mexico. Electronic address:

Published: December 2023

Environmental pollution problems caused by the use of fossil fuels have led to the search for renewable energy sources to mitigate greenhouse gas emissions. In addition, constructed wetlands-microbial fuel cells (CW-MFC) could contribute to sustainable development, considering that this technology focuses on the production of bioelectricity. One of the main challenges of CW-MFCs is to potentiate their bioelectrochemical performance. Therefore, this research used the Geobacter sulfurreducens DL-1 bacterium (biofilm) as a bioelectrocatalyst to increase bioelectricity generation. For this, three bioreactors were built as CW-MFCs, using Juncus effusus root exudates and Philodendron cordatum macrophytes as endogenous substrates. The biofilm was developed in a nutrient broth acetate fumarate and directly inoculated onto the anodes of each CW-MFC. The results of bioelectrochemical analyses showed that the biofilm generated more bioelectricity when it consumed the exudates of the Juncus effusus macrophyte, resulting in a maximum performance of 107 mW/m power density, -361 mV anodic potential, 290 mV cathodic potential, and 124 Ω internal resistance, using a concentration of 27.5 mg/L of total organic carbon as an endogenous substrate. The results determined that the quantity of root exudates consumed by the anodic biofilm is directly related to the production of bioelectricity in CW-MFCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2023.108537DOI Listing

Publication Analysis

Top Keywords

geobacter sulfurreducens
8
sulfurreducens dl-1
8
constructed wetlands-microbial
8
wetlands-microbial fuel
8
fuel cells
8
production bioelectricity
8
juncus effusus
8
root exudates
8
bioelectricity
5
bioelectricity production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!