Mushrooms are a good source of protein and phenolic compounds which provides health benefits for humans. The purpose of this study was to compare the content of eight metals, protein, and total phenolics (TPC) of 5 different species (Agaricus bisporus-white and brown mushrooms, Agaricus cupreobrunneus, Auricularia cornea, Hypsizgus tesselatus, and Pleurotus eryngii species-complex) of edible mushrooms available on the Romanian market. Agaricus bisporus and Agaricus cupreobrunneus were purchased and cultivated in Romania and the other species were cultivated in other countries (Turkey and China). The metal content determined by graphite atomic absorption spectrometry (GTAAS) varied in the order Cu > Pb > Ni > Fe > Cr > Mn > Co > Cd. Almost all the samples contained a greater quantity of metals in the stalk than in the cap. In addition, the levels of toxic metals were low. The protein content of analyzed samples ranged from 0.0926 to 0.2743%, the highest value being observed in Pleurotus eryngii species-complex mushroom. TPC of extracts increased over time but there was a variability in the concentration for each mushroom species (0.25-12.25 mg GAE/g). The investigated mushroom species possess no health risk and may be potential nutritional supplements for human diets due to their phenolic compounds, protein, and mineral content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-023-03800-2 | DOI Listing |
Food Chem X
January 2025
Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
Soil contamination with heavy metals poses a significant health risk as these metals can be transferred to humans through agricultural products. This study aimed to identify pumpkin varieties with low cadmium and arsenic accumulation. To this end, we evaluated 25 pumpkin varieties.
View Article and Find Full Text PDFLiver Int
February 2025
Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
Background And Aims: Porto-sinusoidal vascular disorder (PSVD) is a rare vascular liver disorder characterised by specific histological findings in the absence of cirrhosis, which is poorly understood in terms of pathophysiology. While elevated hepatic copper content serves as diagnostic hallmark in Wilson disease (WD), hepatic copper content has not yet been investigated in PSVD.
Methods: Patients with a verified diagnosis of PSVD at the Medical University of Vienna and available hepatic copper content at the time of diagnosis of PSVD were retrospectively included.
Angew Chem Int Ed Engl
January 2025
Sichuan University, Institute of New Energy and Low-Carbon Technology, CHINA.
Doping with non-metallic heteroatom is an effective approach to tailor the electronic structure of Ni for enhancing its alkaline hydrogen oxidation reaction (HOR) catalytic performance. However, the modulation of HOR activity of Ni by lattice carbon (LC) atoms has rarely been reported, especially to reveal the rule between the doping effect and activity caused by the content of LC atoms. Here, hydrogen is proposed as a scavenger for LC atoms in the pyrolytic reduction process to finely control the content of LC atoms in Ni.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.
View Article and Find Full Text PDFSci Rep
January 2025
College of Natural and Computational Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
The conversion of water hyacinth into biochar offers a sustainable solution to mitigate its proliferation and enhances its potential as a soil amendment for agriculture. This study examined the physicochemical properties of water hyacinth biochar (WHBC) and its impact on soil fertility. Water hyacinth (Eichhornia crassipes) was pyrolyzed at 300 °C for 40 minute with restricted airflow (2-3 m/s), producing biochar with desirable properties and a yield of 44.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!