Phytohormones play indispensable roles in plant growth and development. However, the molecular mechanisms underlying phytohormone-mediated regulation of fiber secondary cell wall (SCW) formation in cotton (Gossypium hirsutum) remain largely underexplored. Here, we provide mechanistic evidence for functional interplay between the APETALA2/ethylene response factor (AP2/ERF) transcription factor GhERF108 and auxin response factors GhARF7-1 and GhARF7-2 in dictating the ethylene-auxin signaling crosstalk that regulates fiber SCW biosynthesis. Specifically, in vitro cotton ovule culture revealed that ethylene and auxin promote fiber SCW deposition. GhERF108 RNA interference (RNAi) cotton displayed remarkably reduced cell wall thickness compared with controls. GhERF108 interacted with GhARF7-1 and GhARF7-2 to enhance the activation of the MYB transcription factor gene GhMYBL1 (MYB domain-like protein 1) in fibers. GhARF7-1 and GhARF7-2 respond to auxin signals that promote fiber SCW thickening. GhMYBL1 RNAi and GhARF7-1 and GhARF7-2 virus-induced gene silencing (VIGS) cotton displayed similar defects in fiber SCW formation as GhERF108 RNAi cotton. Moreover, the ethylene and auxin responses were reduced in GhMYBL1 RNAi plants. GhMYBL1 directly binds to the promoters of GhCesA4-1, GhCesA4-2, and GhCesA8-1 and activates their expression to promote cellulose biosynthesis, thereby boosting fiber SCW formation. Collectively, our findings demonstrate that the collaboration between GhERF108 and GhARF7-1 or GhARF7-2 establishes ethylene-auxin signaling crosstalk to activate GhMYBL1, ultimately leading to the activation of fiber SCW biosynthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615210 | PMC |
http://dx.doi.org/10.1093/plcell/koad214 | DOI Listing |
Proc Natl Acad Sci U S A
December 2024
Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea.
Plants have evolved photoreceptors to optimize their development during primary growth, including germination, hypocotyl elongation, cotyledon opening, and root growth, allowing them to adapt to challenging light conditions. The light signaling transduction pathway during seedling establishment has been extensively studied, but little molecular evidence is available for light-regulated secondary growth, and how light regulates cambium-derived tissue production remains largely unexplored. Here, we show that CRYPTOCHROME (CRY)-dependent blue light signaling and the subsequent attenuation of ELONGATED HYPOCOTYL 5 (HY5) movement to hypocotyls are key inducers of xylem fiber differentiation in Using grafted chimeric plants and hypocotyl-specific transcriptome sequencing of light signaling mutants under controlled light conditions, we demonstrate that the perception of blue light by CRYs in shoots drives secondary cell wall (SCW) deposition at xylem fiber cells during the secondary growth of hypocotyls.
View Article and Find Full Text PDFPlant J
November 2024
Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
TBL family proteins containing the domain of unknown function mainly act as xylan O-acetyltransferases, but the specific molecular mechanism of their functions remains unclear in plants (especially in cotton) so far. In this study, we characterized the TBL family proteins containing the conserved GDS and DxxH motifs in cotton (Gossypium hirsutum). Among them, GhTBL3 is highly expressed in fibers at the stage of secondary cell wall (SCW) formation and mainly functions as O-acetyltransferase to maintain acetylation of xylan in fiber SCW development.
View Article and Find Full Text PDFPlant Sci
January 2025
State Key Laboratory of Subtropical Silviculture, Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China. Electronic address:
Phloem fiber is a key component of phloem tissue and is involved in supporting its structural integrity. NAC domain transcription factors are master switches that regulate secondary cell wall (SCW) biosynthesis in xylem fibers, but the mechanism by which NACs regulate phloem fiber development remains unexplored. Here, a NAC2-like gene in poplar, PagNAC2a, was shown to be involved in phloem fiber differentiation.
View Article and Find Full Text PDFJ Integr Plant Biol
December 2024
Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
Cotton (Gossypium hirsutum) fibers are elongated single cells that rapidly accumulate cellulose during secondary cell wall (SCW) thickening, which requires cellulose synthase complex (CSC) activity. Here, we describe the CSC-interacting factor CASPARIAN STRIP MEMBRANE DOMAIN-LIKE1 (GhCASPL1), which contributes to SCW thickening by influencing CSC stability on the plasma membrane. GhCASPL1 is preferentially expressed in fiber cells during SCW biosynthesis and encodes a MARVEL domain protein.
View Article and Find Full Text PDFAnn Bot
December 2024
Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
Background And Aims: The master transcription factor NAC SECONDARY WALL THICKENING PROMOTING FACTOR3 (NST3), also known as SND1, plays a pivotal role in regulating secondary cell wall (SCW) development in interfascicular and xylary fibres in Arabidopsis thaliana. Despite progress in understanding SCW assembly in xylem vessel-like cells, the mechanisms behind its assembly across different cell types remain unclear. Overexpression of NST3 or its homologue NST1 leads to reduced fertility, posing challenges for studying their impact on secondary wall formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!