Background: Overground exoskeleton gait training (OEGT) after neurological injury is safe, feasible, and may yield positive outcomes. However, no recommendations exist for initiation, progression, or termination of OEGT. This retrospective study highlights the clinical use and decision-making of OEGT within the physical therapy plan of care for patients after neurological injury during inpatient rehabilitation.
Methods: The records of patients admitted to inpatient rehabilitation after stroke, spinal cord injury, or traumatic brain injury who participated in at least one OEGT session were retrospectively reviewed. Session details were analyzed to illustrate progress and included: "up" time, "walk" time, step count, device assistance required for limb swing, and therapist-determined settings. Surveys were completed by therapists responsible for OEGT sessions to illuminate clinical decision-making.
Results: On average, patients demonstrated progressive tolerance for OEGT over successive sessions as shown by increasing time upright and walking, step count, and decreased assistance required by the exoskeleton. Therapists place preference on using OEGT with patients with more functional dependency and assess feedback from the patient and device to determine when to change settings. OEGT is terminated when other gait methods yield higher step repetitions or intensities, or to prepare for discharge.
Conclusion: Our descriptive retrospective data suggests that patients after neurological injury may benefit from OEGT during inpatient rehabilitation. As no guidelines exist, therapists' clinical decisions are currently based on a combination of knowledge of motor recovery and experience. Future efforts should aim to develop evidence-based recommendations to facilitate functional recovery after neurological injury by leveraging OEGT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401799 | PMC |
http://dx.doi.org/10.1186/s12984-023-01220-w | DOI Listing |
Fluids Barriers CNS
January 2025
Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia.
Background: Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Surgery, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Objective: Increased intracranial pressure (ICP) can worsen the clinical condition of traumatic brain injury (TBI) patients. One non-invasive and easily bedside-performed technique to estimate ICP is ultrasonographic measurement of optic nerve sheath diameter (ONSD). This study aimed to analyze ONSD and correlate it with ICP values obtained by intraparenchymal monitoring to establish the ONSD threshold value for elevated ICP and reference range of ONSD in severe TBI patients.
View Article and Find Full Text PDFChin Med J (Engl)
January 2025
Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
Background: Neurological dysfunction is a common complication of traumatic brain injury (TBI), and early treatments are critical for the long-term prognosis. This study aimed to investigate whether hypidone hydrochloride (YL-0919) improves neurological function impairment in mice with TBI.
Methods: TBI was induced in adult male C57BL/6J mice using the controlled cortical impact (CCI) method.
BMJ Case Rep
January 2025
Neurosurgery, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy.
Spinal dural arteriovenous fistulas (SDAVFs) are the most common type of spinal vascular malformations. Multiple SDAVFs are unusual and can occur either synchronously or metachronously, as reported in the literature. We report on the unusual case of a woman with three separate SDAVFs, which were surgically treated within the same setting; the postoperative course was characterised by unexplained repeated haematoma formation within the surgical sites.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Orthopaedics, All India Institute of Medical Sciences, New Delhi, India.
Slimmer's paralysis is a peripheral mononeuropathy of the common peroneal (fibular) nerve (CPN/CFN), typically associated with rapid weight loss resulting in loss of subcutaneous fat pad and subsequent neural compression at the fibular head. Here, we describe a young man with a 1-year history of right-sided foot drop, which developed following a rapid intentional weight loss of 11 kg over a period of 15 days. This weight loss was preceded by rapid weight gain over 2 days owing to binge eating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!