Polymeric nature of tandemly repeated genes enhances assembly of constitutive heterochromatin in fission yeast.

Commun Biol

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Hokkaido, Japan.

Published: August 2023

AI Article Synopsis

Article Abstract

Motivated by our recent experiments that demonstrate that the tandemly repeated genes become heterochromatin, here we show a theory of heterochromatin assembly by taking into account the connectivity of these genes along the chromatin in the kinetic equations of small RNA production and histone methylation, which are the key biochemical reactions involved in the heterochromatin assembly. Our theory predicts that the polymeric nature of the tandemly repeated genes ensures the steady production of small RNAs because of the stable binding of nascent RNAs produced from the genes to RDRC/Dicers at the surface of nuclear membrane. This theory also predicts that the compaction of the tandemly repeated genes suppresses the production of small RNAs, consistent with our recent experiments. This theory can be extended to the small RNA-dependent gene silencing in higher organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403545PMC
http://dx.doi.org/10.1038/s42003-023-05154-wDOI Listing

Publication Analysis

Top Keywords

tandemly repeated
16
repeated genes
16
polymeric nature
8
nature tandemly
8
heterochromatin assembly
8
theory predicts
8
production small
8
small rnas
8
genes
6
tandemly
4

Similar Publications

Microsatellites, or simple sequence repeats (SSRs), are short tandemly repeated DNA sequences widely dispersed throughout the genome. Their high variability, co-dominant inheritance, and ease of detection make them valuable genetic markers, frequently used to study genetic diversity, population structure, and evolutionary processes. In the context of malaria research, particularly with Plasmodium falciparum (P.

View Article and Find Full Text PDF

Coral populations across the Great Barrier Reef (GBR) could rapidly adapt to the warming climate if they have standing genetic variation for thermal tolerance. Here, we describe a locus likely involved in latitudinal adaptation of Acropora millepora. This locus shows a steep latitudinal gradient of derived allele frequency increasing at higher latitudes, and harbours a cluster of eight tandemly repeated Δ9-desaturase genes adjacent to a region in the genome where a hard selective sweep likely occurred.

View Article and Find Full Text PDF

Satellite DNAs (satDNAs) are tandemly repeated sequences that make up a significant portion of almost all eukaryotic genomes. Although satDNAs have been shown to play an important role in genome organization and evolution, they are relatively poorly analyzed, even in model organisms. One of the main reasons for the current lack of in-depth studies on satDNAs is their underrepresentation in genome assemblies.

View Article and Find Full Text PDF

Pseudosymmetric hetero-oligomers with three or more unique subunits with overall structural (but not sequence) symmetry play key roles in biology, and systematic approaches for generating such proteins de novo would provide new routes to controlling cell signaling and designing complex protein materials. However, the de novo design of protein hetero-oligomers with three or more distinct chains with nearly identical structures is a challenging unsolved problem because it requires the accurate design of multiple protein-protein interfaces simultaneously. Here, we describe a divide-and-conquer approach that breaks the multiple-interface design challenge into a set of more tractable symmetric single-interface redesign tasks, followed by structural recombination of the validated homo-oligomers into pseudosymmetric hetero-oligomers.

View Article and Find Full Text PDF

Boosting transcriptional activities by employing repeated activation domains in transcription factors.

Plant Cell

December 2024

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China.

Enhancing the transcriptional activation activity of transcription factors (TFs) has multiple applications in organism improvement, metabolic engineering, and other aspects of plant science, but the approaches remain unclear. Here, we used gene activation assays and genetic transformation to investigate the transcriptional activities of two MYB TFs, PRODUCTION OF ANTHOCYANIN PIGMENT 1 (AtPAP1) from Arabidopsis (Arabidopsis thaliana) and EsMYBA1 from Epimedium (Epimedium sagittatum), and their synthetic variants in a range of plant species from several families. Using anthocyanin biosynthesis as a convenient readout, we discovered that homologous naturally occurring TFs showed differences in the transcriptional activation ability and that similar TFs induced large changes in the genetic program when heterologously expressed in different species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!