A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-evaluation of automated vehicles based on physics, state-of-the-art motion prediction and user experience. | LitMetric

Legal restrictions allow to give full control to automated vehicles for longer time periods either in restricted areas or when moving with reduced speed. Although being technically feasible for a wide range of driving scenarios, the restrictions are still in place due to the lack of a clear safety strategy. An essential step towards safety is the introduction of a self-monitoring component. In this study, a self-evaluation concept is presented which assesses a system based on a physics-defined minimum prediction horizon for state-of-the-art Deep Learning-based trajectory prediction models. Since User Experience is a key metric for car manufacturers, a further manoeuvre constraint is added to the model. We emphasize the generalizability of the presented assessment concept, however, in order to demonstrate feasibility in practical use, three specific scenarios are discussed. The results are gained with real data from publicly available driving campaigns as well as synthetically generated simulation data. Two exemplary models, a simple LSTM-based model and VectorNet, a prominent motion prediction model, are evaluated. A quantitative assessment shows a lack of training data in the public datasets for vehicle speeds > 25 m/s in order to offer safe driving above such vehicle speeds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403601PMC
http://dx.doi.org/10.1038/s41598-023-39811-1DOI Listing

Publication Analysis

Top Keywords

automated vehicles
8
motion prediction
8
user experience
8
vehicle speeds
8
self-evaluation automated
4
vehicles based
4
based physics
4
physics state-of-the-art
4
state-of-the-art motion
4
prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!