AI Article Synopsis

  • Multi-wavelength visible light emitters are essential for solid-state lighting, but current methods face issues like phosphor complications and complex assembly.
  • A new platform integrates tailored emission wavelengths on a single chip using flexible 3D topographies, allowing for localized variations in In composition for InGaN-based LEDs.
  • This innovation enables monolithic integration of three colors (violet, blue, green) with independent electrical control, paving the way for customizable spectral control in future lighting and display technologies.

Article Abstract

Multi-wavelength visible light emitters play a crucial role in current solid-state lighting. Although they can be realized by combining semiconductor light-emitting diodes (LEDs) and phosphors or by assembling multiple LED chips with different wavelengths, these design approaches suffer from phosphor-related issues or complex assembly processes. These challenges are significant drawbacks for emerging applications such as visible light communication and micro-LED displays. Herein we present a platform for tailored emission wavelength integration on a single chip utilizing epitaxial growth on flexibly-designed three-dimensional topographies. This approach spontaneously arranges the local emission wavelengths of InGaN-based LED structures through the local In composition variations. As a result, we demonstrate monolithic integration of three different emission colors (violet, blue, and green) on a single chip. Furthermore, we achieve flexible spectral control via independent electrical control of each component. Our integration scheme opens the possibility for tailored spectral control in an arbitrary spectral range through monolithic multi-wavelength LEDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403568PMC
http://dx.doi.org/10.1038/s41598-023-39791-2DOI Listing

Publication Analysis

Top Keywords

light-emitting diodes
8
visible light
8
single chip
8
spectral control
8
flexible topographical
4
topographical design
4
design light-emitting
4
diodes realizing
4
realizing electrically
4
electrically controllable
4

Similar Publications

Purpose: Photobiomodulation (PBM) is a non-invasive therapeutic procedure that consists of irradiating a local area of the skin with red and near-infrared lasers or light emitting diodes (LEDs). Local PBM has been studied as a method to improve exercise performance and recovery. This review aims to evaluate the efficacy of whole-body PBM for exercise performance and recovery, comparing its findings to the established effects of localized PBM.

View Article and Find Full Text PDF

Developing highly efficient deep-blue multi-resonance thermal activated delayed fluorescence (MR-TADF) materials for ultra-high-definition organic light-emitting diodes (OLEDs) displays that meet the stringent BT.2020 standard remains a significant challenge. In this study, we present a strategy to achieve high-performance deep-blue MR-TADF emitters by integrating a large π-conjugated double-boron-embedded MR skeleton with strategically positioned peripheral steric hindrance groups.

View Article and Find Full Text PDF

Understanding the dynamics of injected charge carriers is crucial for the analysis of the perovskite light-emitting diode (PeLED) operation. The behavior of the injected carriers largely dictates the external quantum efficiency (EQE) roll-off at high current densities and the temperature dependence of the EQE in PeLEDs. However, limitations such as sample capacitance and external circuitry hinder precise control of carrier injection rates, making it challenging to directly track the dynamics of individual carriers.

View Article and Find Full Text PDF

CaLuScAlSiO:Ce Green Phosphors for High-Quality White LEDs.

Inorg Chem

January 2025

College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, P.R. China.

Phosphors with broadband green emission are highly desirable for the construction of high-color-rendering warm-white light-emitting diode (LED) devices toward healthy solid-state lighting applications. However, most of the reported green phosphors are subject to an undesirable emission bandwidth and low quantum efficiency. Here, a highly efficient broadband green-emitting garnet phosphor, CaLuScAlSiO:Ce (CLSASO:Ce), is successfully synthesized and investigated in detail.

View Article and Find Full Text PDF

Landau-Levich Scaling for Optimization of Quantum Dot Layer Morphology and Thickness in Quantum-Dot Light-Emitting Diodes.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States.

Quantum dot (QD) light-emitting diodes (QLEDs) are promising candidates for next-generation displays because of their high efficiency, brightness, broad color gamut, and solution-processability. Large-scale solution-processing of electroluminescent QLEDs poses significant challenges, particularly concerning the precise control of the active layer's thickness and uniformity. These obstacles directly impact charge transport, leading to current leakage and reduced overall efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!