Pancreatic cancer (PC), a highly lethal malignancy, commonly exhibits metabolic reprogramming that results in therapeutic vulnerabilities. Nevertheless, the mechanisms underlying the impacts of aberrant cholesterol metabolism on PC development and progression remain elusive. In this study, we found that squalene epoxidase (SQLE) is a crucial mediator of cholesterol metabolism in PC growth. We observed a profound upregulation of SQLE in PC tissues, and its high expression was correlated with poor patient outcomes. Our functional experiments demonstrated that SQLE facilitated cell proliferation, induced cell cycle progression, and inhibited apoptosis in vitro, while promoting tumor growth in vivo. Mechanistically, SQLE was found to have a dual role. First, its inhibition led to squalene accumulation-induced endoplasmic reticulum (ER) stress and subsequent apoptosis. Second, it enhanced de novo cholesterol biosynthesis and maintained lipid raft stability, thereby activating the Src/PI3K/Akt signaling pathway. Significantly, employing SQLE inhibitors effectively suppressed PC cell proliferation and xenograft tumor growth. In summary, this study reveals SQLE as a novel oncogene that promotes PC growth by mitigating ER stress and activating lipid raft-regulated Src/PI3K/Akt signaling pathway, highlighting the potential of SQLE as a therapeutic target for PC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403582 | PMC |
http://dx.doi.org/10.1038/s41419-023-05987-7 | DOI Listing |
Cells
December 2024
Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
Postmenopausal osteoporosis (PMOP) is a bone disease characterized by bone thinning and an increased risk of fractures due to estrogen deficiency. Current PMOP therapies often result in adverse side effects. The traditional medicinal plant is commonly used to strengthen bones and support kidney function, but its role in treating PMOP is not well understood.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China. Electronic address:
Ethnopharmacological Relevance: Jiao-tai-wan (JTW) is a traditional Chinese herbal prescription, exerts its therapeutic effects on type 2 diabetes mellitus (T2DM). However, its mechanisms and active components remain unclear.
Aim Of The Study: To investigate the therapeutic mechanisms of JTW in treating type 2 diabetes mellitus (T2DM), focusing on identifying active components, their targets, and validating efficacy through SRC/PI3K/AKT signaling pathway modulation in vitro and in vivo.
J Virol
October 2024
Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
Cancer Genomics Proteomics
August 2024
Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India;
Background/aim: Glioblastomas (GBM) are infiltrative malignant brain tumors which mostly recur within a year's time following surgical resection and chemo-radiation therapy. Studies on glioblastoma cells following radio-chemotherapy, have been demonstrated to induce trans-differentiation, cellular plasticity, activation of DNA damage response and stemness. As glioblastomas are heterogenous tumors that develop treatment resistance and plasticity, we investigated if there exist genome-wide DNA methylation changes in recurrent tumors.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
The incidence of nonalcoholic fatty liver disease (NAFLD), or metabolic dysfunction-associated fatty liver disease (MAFLD), is increasing in adults and children. Unfortunately, effective pharmacological treatments remain unavailable. Single nucleotide polymorphisms (SNPs) in the patatin-like phospholipase domain-containing protein (PNPLA3 I148M) have the most significant genetic association with the disease at all stages of its progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!