Role of cytokines and reactive oxygen species in brain aging.

Mech Ageing Dev

Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.

Published: September 2023

AI Article Synopsis

  • Aging significantly impacts the brain due to both external factors and changes in immune cells over time.
  • Immunosenescence and Inflammaging contribute to increased inflammation and oxidative stress in the brain, elevating cytokine levels.
  • This pro-inflammatory environment causes harmful alterations in brain structure and function, ultimately impairing central and neuroendocrine processes.

Article Abstract

Aging is a complex process that produces profound effects on the brain. Although a number of external factors can promote the initiation and progression of brain aging, peripheral and central changes in the immune cells with time, also play an important role. Immunosenescence, which is an age-associated decline in immune function and Inflammaging, a low-grade inflammatory state in the aging brain contribute to an elevation in cytokine and reactive oxygen species production. In this review, we focus on the pro-inflammatory state that is established in the brain as a consequence of these two phenomena and the resulting detrimental changes in brain structure, function and repair that lead to a decline in central and neuroendocrine function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528856PMC
http://dx.doi.org/10.1016/j.mad.2023.111855DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
brain aging
8
brain
6
role cytokines
4
cytokines reactive
4
species brain
4
aging
4
aging aging
4
aging complex
4

Similar Publications

Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.

View Article and Find Full Text PDF

Introduction: Although photodynamic therapy (PDT) shows considerable potential for cancer treatment due to its precise spatial control and reduced toxicity, effectively eliminating residual cells under hypoxic conditions remains challenging because of the resistance conferred by these cells.

Methods: Herein, we synthesize an amphiphilic PEGylated polyphosphoester and present a nanocarrier (NP) specifically designed for the codelivery of hydrophobic photosensitizer (chlorin e6, Ce6) and hypoxia-activated prodrugs (tirapazamine, TPZ). We investigate the antitumor effect of NP on both cellular and animal level.

View Article and Find Full Text PDF

This study aimed to evaluate different combinations of three dietary supplements for potential additive or synergistic effects in an Parkinson's Disease model. The complex and diverse processes leading to neurodegeneration in each patient with a neurodegenerative disorder cannot be effectively addressed by a single medication. Instead, various combinations of potentially neuroprotective agents targeting different disease mechanisms simultaneously may show improved additive or synergistic efficacy in slowing the disease progression and allowing the agents to be utilized at lower doses to minimize side effects.

View Article and Find Full Text PDF

Diffuse gastric adenocarcinoma (DGAC) is an aggressive malignancy with limited therapeutic options, poor prognosis, and poorly understood biology. CRACD, an actin polymerization regulator, is often inactivated in gastric cancer, including DGAC. We found that genetic engineering of murine gastric organoids with ablation combined with mutation and loss induced aberrant cell plasticity, hyperproliferation, and hypermucinosis, the features that recapitulate DGAC transcriptional signatures.

View Article and Find Full Text PDF

The capsaicin receptor, TRPV1, mediates the detection of harmful chemical and thermal stimuli. Overactivation of TRPV1 can lead to cellular damage or death through excitotoxicity, a phenomenon associated with painful neuropathy and the paradoxical use of capsaicin as an analgesic. We exploited capsaicin-evoked death to conduct a systematic analysis of excitotoxicity through a genome-wide CRISPRi screen, thereby revealing a comprehensive network of regulatory pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!