Stress response pathways like the integrated stress response (ISR), the mitochondrial unfolded protein response (UPR) and the heat shock response (HSR) have emerged as part of the pathophysiology of neurodegenerative diseases, including Huntington's disease (HD) - a currently incurable disease caused by the production of mutant huntingtin (mut-Htt). Previous data from HD patients suggest that ISR is activated while UPR and HSR are impaired in HD. The study of these stress response pathways as potential therapeutic targets in HD requires cellular models that mimic the activation status found in HD patients of such pathways. PC12 cells with inducible expression of the N-terminal fragment of mut-Htt are among the most used cell lines to model HD, however the activation of stress responses remains unclear in this model. The goal of this study is to characterize the activation of ISR, UPR and HSR in this HD cell model and evaluate if it mimics the activation status found in HD patients. We show that PC12 HD cell model presents reduced levels of Hsp90 and mitochondrial chaperones, suggesting an impaired activation or function of HSR and UPR. This HD model also presents increased levels of phosphorylated eIF2α, the master regulator of the ISR, but overall similar levels of ATF4 and decreased levels of CHOP - transcription factors downstream to eIF2α - in comparison to control, suggesting an initial activation of ISR. These results show that this model mimics the ISR activation and the impaired UPR and HSR found in HD patients. This work suggests that the PC12 N-terminal HD model is suitable for studying the role of stress response pathways in the pathophysiology of HD and for exploratory studies investigating the therapeutic potential of drugs targeting stress responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2023.109711 | DOI Listing |
Histol Histopathol
January 2025
Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Jiangsu, PR China.
Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States.
Resolution of inflammation is essential for normal tissue healing and regeneration, with macrophages playing a key role in regulating this process through phenotypic changes from a pro-inflammatory to an anti-inflammatory state. Pharmacological and mechanical (mechanotherapy) techniques can be employed to polarize macrophages toward an anti-inflammatory phenotype, thereby diminishing inflammation. One clinically relevant pharmacological approach is the inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4).
View Article and Find Full Text PDFJ Bisex
July 2024
Department of Psychology, Rosalind Franklin University of Medicine and Science.
Bi+ men are more likely to use alcohol and drugs than heterosexual and often gay men. The minority stress model is the predominant framework for understanding these disparities, but it is unknown whether this framework is consistent with bi+ men's perspectives. As part of an online survey, 69 bi+ young men (ages 18-29; 29% transgender) were asked why they think bisexual men are more likely to use alcohol and drugs than other men (including gay men).
View Article and Find Full Text PDFACS Agric Sci Technol
January 2025
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
Plant infiltration techniques, particularly agroinfiltration, have transformed plant science and biotechnology by enabling transient gene expression for genetic engineering of plants or genomic studies. Recently, the use of infiltration has expanded to introduce nanomaterials and polymers in plants to enable nonnative functionalities. Despite its wide use, the impact of the infiltration process on plant physiology needs to be better understood.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States.
Heat Shock Factor 1 (HSF1) is a major transcriptional factor regulating the heat shock response and has become a potential target for overcoming cancer chemoresistance. This review comprehensively examines HSF1's role in chemoresistance and its potential as a therapeutic target in cancer. We explore the complex, intricate mechanism that regulates the activation of HSF1, HSF1's function in promoting resistance to chemotherapy, and the strategies used to manipulate HSF1 for therapeutic benefit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!