This study investigated the degradation of Acid Blue 113 (AB 113) dye using Klebsiella grimontii entrapped Graphene Oxide-Calcium Alginate Hydrogel beads (KG-GO-CA) in a Fluidized Bed Bioreactor (FBBR) under varying inlet loading rates. The minimum fluidization velocity of the KG-GO-CA hydrogel beads in FBBR was found to be 0.15 mm/s. The KG-GO-CA beads showed a maximum removal efficiency of 94.6% at an inlet flow rate of 20 mL/h over 15 days. Reusability studies indicated a removal efficiency of 70.6 ± 2.5% for AB 113 after the 12 cycle. Langmuir adsorption isotherm showed the best fit (R = 0.98724) with model parameters of Q (203.83 mg/g) and K (0.0101 L/g). The study also confirmed that treated wastewater was more environmentally safe for domestic and commercial uses than untreated wastewater. The research highlights the potential use of KG-GO-CA hydrogel beads for removing dyes from wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.129614DOI Listing

Publication Analysis

Top Keywords

hydrogel beads
16
acid blue
8
blue 113
8
113 dye
8
dye klebsiella
8
klebsiella grimontii
8
grimontii entrapped
8
entrapped graphene
8
graphene oxide-calcium
8
oxide-calcium alginate
8

Similar Publications

Fabrication of phospholipid polymer-modified alginate hydrogels for bioartificial pancreas.

J Biosci Bioeng

January 2025

Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. Electronic address:

The bioartificial pancreas, composed of a semi-permeable hydrogel encapsulating insulin-secreting cells, has attracted attention as a treatment for type 1 diabetes. In this study, we developed phospholipid polymer-modified alginate hydrogel beads that encapsulated spheroids of the pancreatic beta cell line MIN6. The hydrogel beads were composed of methacrylated alginic acid, which enabled both ionic and covalent cross-linking, resulting in a hydrogel that was more stable than conventional alginate hydrogels.

View Article and Find Full Text PDF

The VCo-LDH/CS hydrogel beads were created by combining VCo-layered double hydroxide (VCo-LDH) and chitosan (CS) using a cross-linking process with epichlorohydrin. These beads were specifically designed to remove tetracycline (TTC). To characterize the VCo-LDH/CS hydrogel beads, several analytical techniques were used, with PXRD, XPS, FESEM, EDX, and FT-IR.

View Article and Find Full Text PDF

The primary goal of the current work was to construct pH-sensitive nano and microcomposite hydrogel beads based on alginate (AL), carboxymethyl cellulose (CMC), biochar (BC), and two Moroccan clays: Ghassoul (swelling SW) and red (not swelling NSW) nano and microhybrid. The adsorbents, SW + AL, SW + AL + BC, SW + AL + CMC, NSW + AL, NSW + AL + BC, NSW + AL + CMC, AL, and AL + CMC were prepared for the adsorption of the antibiotic sulfadiazine (SDZ). The test samples were characterized using a variety of techniques, including X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), and scanning electron microscopy (SEM), with the molecular structures of the studied additives geometrically optimized using the DFT/B3LYP method and the function 6-311G(d).

View Article and Find Full Text PDF

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

Cellulose microgel beads fabricated using the dropping technique suffer from structural irregularity and mechanical variability. This limits their translation to biomedical applications that are sensitive to variations in material properties. Ionic salts are often uncontrolled by-products of this technique, despite the known effects of ionic salts on cellulose assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!